From: "Kun Qin" <kuqin12@gmail.com>
To: devel@edk2.groups.io, rebecca@quicinc.com,
Sami Mujawar <sami.mujawar@arm.com>,
Ard Biesheuvel <ardb+tianocore@kernel.org>,
Leif Lindholm <quic_llindhol@quicinc.com>,
Jian J Wang <jian.j.wang@intel.com>,
Liming Gao <gaoliming@byosoft.com.cn>,
Tiger Liu <TigerLiu@zhaoxin.com>
Subject: Re: [edk2-devel] [PATCH v4 2/3] ArmPkg: implement EFI_MP_SERVICES_PROTOCOL based on PSCI calls
Date: Fri, 6 Jan 2023 14:16:15 -0800 [thread overview]
Message-ID: <1497c8b2-18f4-45ca-f30d-b06a33cd83ea@gmail.com> (raw)
In-Reply-To: <1737D7D0377487BE.3916@groups.io>
Sorry, hit the send button too soon... One more comment under [KQ-2].
Thanks,
Kun
On 1/6/2023 2:11 PM, Kun Qin via groups.io wrote:
> Hi Rebecca,
>
> I have tried to use this for a few different scenarios and below is a
> few minor issues I have found and potential
> changes (marked with [KQ]). Please let me know if I have any
> misunderstanding on the protocol itself.
>
> Thanks,
> Kun
>
> On 1/4/2023 7:37 AM, Rebecca Cran wrote:
>> Add support for EFI_MP_SERVICES_PROTOCOL during the DXE phase under
>> AArch64.
>>
>> PSCI_CPU_ON is called to power on the core, the supplied procedure is
>> executed and PSCI_CPU_OFF is called to power off the core.
>>
>> Fixes contributed by Ard Biesheuvel.
>>
>> Signed-off-by: Rebecca Cran <rebecca@quicinc.com>
>> ---
>> ArmPkg/ArmPkg.dsc | 1 +
>> ArmPkg/Drivers/ArmPsciMpServicesDxe/ArmPsciMpServicesDxe.inf | 56 +
>> ArmPkg/Drivers/ArmPsciMpServicesDxe/MpServicesInternal.h | 344 ++++
>> ArmPkg/Drivers/ArmPsciMpServicesDxe/ArmPsciMpServicesDxe.c | 1847
>> ++++++++++++++++++++
>> ArmPkg/Drivers/ArmPsciMpServicesDxe/MpFuncs.S | 57 +
>> 5 files changed, 2305 insertions(+)
>>
>> diff --git a/ArmPkg/ArmPkg.dsc b/ArmPkg/ArmPkg.dsc
>> index ac24ebce4892..1e873b90c56d 100644
>> --- a/ArmPkg/ArmPkg.dsc
>> +++ b/ArmPkg/ArmPkg.dsc
>> @@ -164,6 +164,7 @@ [Components.common]
>> ArmPkg/Universal/Smbios/OemMiscLibNull/OemMiscLibNull.inf
>> [Components.AARCH64]
>> + ArmPkg/Drivers/ArmPsciMpServicesDxe/ArmPsciMpServicesDxe.inf
>> ArmPkg/Drivers/MmCommunicationDxe/MmCommunication.inf
>> ArmPkg/Library/ArmMmuLib/ArmMmuPeiLib.inf
>> diff --git
>> a/ArmPkg/Drivers/ArmPsciMpServicesDxe/ArmPsciMpServicesDxe.inf
>> b/ArmPkg/Drivers/ArmPsciMpServicesDxe/ArmPsciMpServicesDxe.inf
>> new file mode 100644
>> index 000000000000..2c9ab99038f2
>> --- /dev/null
>> +++ b/ArmPkg/Drivers/ArmPsciMpServicesDxe/ArmPsciMpServicesDxe.inf
>> @@ -0,0 +1,56 @@
>> +## @file
>> +# ARM MP services protocol driver
>> +#
>> +# Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights
>> reserved.<BR>
>> +#
>> +# SPDX-License-Identifier: BSD-2-Clause-Patent
>> +#
>> +##
>> +
>> +[Defines]
>> + INF_VERSION = 1.27
>> + BASE_NAME = ArmPsciMpServicesDxe
>> + FILE_GUID = 007ab472-dc4a-4df8-a5c2-abb4a327278c
>> + MODULE_TYPE = DXE_DRIVER
>> + VERSION_STRING = 1.0
>> +
>> + ENTRY_POINT = ArmPsciMpServicesDxeInitialize
>> +
>> +[Sources.Common]
>> + ArmPsciMpServicesDxe.c
>> + MpFuncs.S
>> + MpServicesInternal.h
>> +
>> +[Packages]
>> + ArmPkg/ArmPkg.dec
>> + ArmPlatformPkg/ArmPlatformPkg.dec
>> + EmbeddedPkg/EmbeddedPkg.dec
>> + MdePkg/MdePkg.dec
>> + MdeModulePkg/MdeModulePkg.dec
>> +
>> +[LibraryClasses]
>> + ArmLib
>> + ArmMmuLib
>> + ArmSmcLib
>> + BaseMemoryLib
>> + CacheMaintenanceLib
>> + CpuExceptionHandlerLib
>> + DebugLib
>> + HobLib
>> + MemoryAllocationLib
>> + UefiBootServicesTableLib
>> + UefiDriverEntryPoint
>> + UefiLib
>> +
>> +[Protocols]
>> + gEfiMpServiceProtocolGuid ## PRODUCES
>> + gEfiLoadedImageProtocolGuid ## CONSUMES
>> +
>> +[Guids]
>> + gArmMpCoreInfoGuid
>> +
>> +[Depex]
>> + TRUE
>> +
>> +[BuildOptions]
>> + GCC:*_*_*_CC_FLAGS = -mstrict-align
>> diff --git a/ArmPkg/Drivers/ArmPsciMpServicesDxe/MpServicesInternal.h
>> b/ArmPkg/Drivers/ArmPsciMpServicesDxe/MpServicesInternal.h
>> new file mode 100644
>> index 000000000000..5ba63700dd18
>> --- /dev/null
>> +++ b/ArmPkg/Drivers/ArmPsciMpServicesDxe/MpServicesInternal.h
>> @@ -0,0 +1,344 @@
>> +/** @file
>> +
>> +Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights
>> reserved.<BR>
>> +Copyright (c) 2006 - 2011, Intel Corporation. All rights reserved.<BR>
>> +Portions copyright (c) 2011, Apple Inc. All rights reserved.
>> +
>> +SPDX-License-Identifier: BSD-2-Clause-Patent
>> +
>> +**/
>> +
>> +#ifndef MP_SERVICES_INTERNAL_H_
>> +#define MP_SERVICES_INTERNAL_H_
>> +
>> +#include <Protocol/Cpu.h>
>> +#include <Protocol/MpService.h>
>> +
>> +#include <Library/BaseLib.h>
>> +#include <Library/UefiLib.h>
>> +
>> +#define AP_STACK_SIZE 0x1000
>> +
>> +//
>> +// Internal Data Structures
>> +//
>> +
>> +//
>> +// AP state
>> +//
>> +// The state transitions for an AP when it processes a procedure are:
>> +// Idle ----> Ready ----> Busy ----> Finished ----> Idle
>> +// [BSP] [BSP] [AP] [BSP]
>> +//
>> +typedef enum {
>> + CpuStateIdle,
>> + CpuStateReady,
>> + CpuStateBlocked,
>> + CpuStateBusy,
>> + CpuStateFinished,
>> + CpuStateDisabled
>> +} CPU_STATE;
>> +
>> +//
>> +// Define Individual Processor Data block.
>> +//
>> +typedef struct {
>> + EFI_PROCESSOR_INFORMATION Info;
>> + EFI_AP_PROCEDURE Procedure;
>> + VOID *Parameter;
>> + CPU_STATE State;
>> + EFI_EVENT CheckThisAPEvent;
>> + VOID *Ttbr0;
>> + UINTN Tcr;
>> + UINTN Mair;
>> +} CPU_AP_DATA;
>> +
>> +//
>> +// Define MP data block which consumes individual processor block.
>> +//
>> +typedef struct {
>> + UINTN NumberOfProcessors;
>> + UINTN NumberOfEnabledProcessors;
>> + EFI_EVENT CheckAllAPsEvent;
>> + EFI_EVENT WaitEvent;
>> + UINTN FinishCount;
>> + UINTN StartCount;
>> + EFI_AP_PROCEDURE Procedure;
>> + VOID *ProcedureArgument;
>> + BOOLEAN SingleThread;
>> + UINTN StartedNumber;
>> + CPU_AP_DATA *CpuData;
>> + UINTN Timeout;
>> + UINTN TimeTaken;
>> + UINTN *FailedList;
>> + UINTN FailedListIndex;
>> + BOOLEAN TimeoutActive;
>> + BOOLEAN *SingleApFinished;
>> +} CPU_MP_DATA;
>> +
>> +/** Secondary core entry point.
>> +
>> +**/
>> +VOID
>> +ApEntryPoint (
>> + VOID
>> + );
>> +
>> +/** C entry-point for the AP.
>> + This function gets called from the assembly function ApEntryPoint.
>> +**/
>> +VOID
>> +ApProcedure (
>> + VOID
>> + );
>> +
>> +/** Turns on the specified core using PSCI and executes the
>> user-supplied
>> + function that's been configured via a previous call to
>> SetApProcedure.
>> +
>> + @param ProcessorIndex The index of the core to turn on.
>> +
>> + @retval EFI_SUCCESS The processor was successfully turned on.
>> + @retval EFI_DEVICE_ERROR An error occurred turning the processor
>> on.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +EFIAPI
>> +DispatchCpu (
>> + IN UINTN ProcessorIndex
>> + );
>> +
>> +/** Returns whether the specified processor is the BSP.
>> +
>> + @param[in] ProcessorIndex The index the processor to check.
>> +
>> + @return TRUE if the processor is the BSP, FALSE otherwise.
>> +**/
>> +STATIC
>> +BOOLEAN
>> +IsProcessorBSP (
>> + UINTN ProcessorIndex
>> + );
>> +
>> +/** Returns whether the processor executing this function is the BSP.
>> +
>> + @return Whether the current processor is the BSP.
>> +**/
>> +STATIC
>> +BOOLEAN
>> +IsCurrentProcessorBSP (
>> + VOID
>> + );
>> +
>> +/** Returns whether the specified processor is enabled.
>> +
>> + @param[in] ProcessorIndex The index of the processor to check.
>> +
>> + @return TRUE if the processor is enabled, FALSE otherwise.
>> +**/
>> +STATIC
>> +BOOLEAN
>> +IsProcessorEnabled (
>> + UINTN ProcessorIndex
>> + );
>> +
>> +/** Configures the processor context with the user-supplied
>> procedure and
>> + argument.
>> +
>> + @param CpuData The processor context.
>> + @param Procedure The user-supplied procedure.
>> + @param ProcedureArgument The user-supplied procedure argument.
>> +
>> +**/
>> +STATIC
>> +VOID
>> +SetApProcedure (
>> + IN CPU_AP_DATA *CpuData,
>> + IN EFI_AP_PROCEDURE Procedure,
>> + IN VOID *ProcedureArgument
>> + );
>> +
>> +/**
>> + Get the Application Processors state.
>> +
>> + @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
>> +
>> + @return The AP status
>> +**/
>> +CPU_STATE
>> +GetApState (
>> + IN CPU_AP_DATA *CpuData
>> + );
>> +
>> +/** Returns the index of the next processor that is blocked.
>> +
>> + @param[out] NextNumber The index of the next blocked processor.
>> +
>> + @retval EFI_SUCCESS Successfully found the next blocked processor.
>> + @retval EFI_NOT_FOUND There are no blocked processors.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +GetNextBlockedNumber (
>> + OUT UINTN *NextNumber
>> + );
>> +
>> +/** Stalls the BSP for the minimum of gPollInterval and Timeout.
>> +
>> + @param[in] Timeout The time limit in microseconds remaining for
>> + APs to return from Procedure.
>> +
>> + @retval StallTime Time of execution stall.
>> +**/
>> +STATIC
>> +UINTN
>> +CalculateAndStallInterval (
>> + IN UINTN Timeout
>> + );
>> +
>> +/** Sets up the state for the StartupAllAPs function.
>> +
>> + @param SingleThread Whether the APs will execute sequentially.
>> +
>> +**/
>> +STATIC
>> +VOID
>> +StartupAllAPsPrepareState (
>> + IN BOOLEAN SingleThread
>> + );
>> +
>> +/** Handles execution of StartupAllAPs when a WaitEvent has been
>> specified.
>> +
>> + @param Procedure The user-supplied procedure.
>> + @param ProcedureArgument The user-supplied procedure argument.
>> + @param WaitEvent The wait event to be signaled when the
>> work is
>> + complete or a timeout has occurred.
>> + @param TimeoutInMicroseconds The timeout for the work to be
>> completed. Zero
>> + indicates an infinite timeout.
>> + @param SingleThread Whether the APs will execute
>> sequentially.
>> + @param FailedCpuList User-supplied pointer for list of
>> failed CPUs.
>> +
>> + @return EFI_SUCCESS on success.
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +StartupAllAPsWithWaitEvent (
>> + IN EFI_AP_PROCEDURE Procedure,
>> + IN VOID *ProcedureArgument,
>> + IN EFI_EVENT WaitEvent,
>> + IN UINTN TimeoutInMicroseconds,
>> + IN BOOLEAN SingleThread,
>> + IN UINTN **FailedCpuList
>> + );
>> +
>> +/** Handles execution of StartupAllAPs when no wait event has been
>> specified.
>> +
>> + @param Procedure The user-supplied procedure.
>> + @param ProcedureArgument The user-supplied procedure argument.
>> + @param TimeoutInMicroseconds The timeout for the work to be
>> completed. Zero
>> + indicates an infinite timeout.
>> + @param SingleThread Whether the APs will execute
>> sequentially.
>> + @param FailedCpuList User-supplied pointer for list of
>> failed CPUs.
>> +
>> + @return EFI_SUCCESS on success.
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +StartupAllAPsNoWaitEvent (
>> + IN EFI_AP_PROCEDURE Procedure,
>> + IN VOID *ProcedureArgument,
>> + IN UINTN TimeoutInMicroseconds,
>> + IN BOOLEAN SingleThread,
>> + IN UINTN **FailedCpuList
>> + );
>> +
>> +/** Adds the specified processor the list of failed processors.
>> +
>> + @param ProcessorIndex The processor index to add.
>> + @param ApState Processor state.
>> +
>> +**/
>> +STATIC
>> +VOID
>> +AddProcessorToFailedList (
>> + UINTN ProcessorIndex,
>> + CPU_STATE ApState
>> + );
>> +
>> +/** Handles the StartupAllAPs case where the timeout has occurred.
>> +
>> +**/
>> +STATIC
>> +VOID
>> +ProcessStartupAllAPsTimeout (
>> + VOID
>> + );
>> +
>> +/**
>> + If a timeout is specified in StartupAllAps(), a timer is set,
>> which invokes
>> + this procedure periodically to check whether all APs have finished.
>> +
>> + @param[in] Event The WaitEvent the user supplied.
>> + @param[in] Context The event context.
>> +**/
>> +STATIC
>> +VOID
>> +EFIAPI
>> +CheckAllAPsStatus (
>> + IN EFI_EVENT Event,
>> + IN VOID *Context
>> + );
>> +
>> +/** Invoked periodically via a timer to check the state of the
>> processor.
>> +
>> + @param Event The event supplied by the timer expiration.
>> + @param Context The processor context.
>> +
>> +**/
>> +STATIC
>> +VOID
>> +EFIAPI
>> +CheckThisAPStatus (
>> + IN EFI_EVENT Event,
>> + IN VOID *Context
>> + );
>> +
>> +/**
>> + This function is called by all processors (both BSP and AP) once
>> and collects
>> + MP related data.
>> +
>> + @param BSP TRUE if the processor is the BSP.
>> + @param Mpidr The MPIDR for the specified processor. This
>> should be
>> + the full MPIDR and not only the affinity bits.
>> + @param ProcessorIndex The index of the processor.
>> +
>> + @return EFI_SUCCESS if the data for the processor collected and
>> filled in.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +FillInProcessorInformation (
>> + IN BOOLEAN BSP,
>> + IN UINTN Mpidr,
>> + IN UINTN ProcessorIndex
>> + );
>> +
>> +/**
>> + Event notification function called when the
>> EFI_EVENT_GROUP_READY_TO_BOOT is
>> + signaled. After this point, non-blocking mode is no longer allowed.
>> +
>> + @param Event Event whose notification function is being invoked.
>> + @param Context The pointer to the notification function's context,
>> + which is implementation-dependent.
>> +
>> +**/
>> +STATIC
>> +VOID
>> +EFIAPI
>> +ReadyToBootSignaled (
>> + IN EFI_EVENT Event,
>> + IN VOID *Context
>> + );
>> +
>> +#endif /* MP_SERVICES_INTERNAL_H_ */
>> diff --git
>> a/ArmPkg/Drivers/ArmPsciMpServicesDxe/ArmPsciMpServicesDxe.c
>> b/ArmPkg/Drivers/ArmPsciMpServicesDxe/ArmPsciMpServicesDxe.c
>> new file mode 100644
>> index 000000000000..ab439bffd722
>> --- /dev/null
>> +++ b/ArmPkg/Drivers/ArmPsciMpServicesDxe/ArmPsciMpServicesDxe.c
>> @@ -0,0 +1,1847 @@
>> +/** @file
>> + Construct MP Services Protocol.
>> +
>> + The MP Services Protocol provides a generalized way of performing
>> following tasks:
>> + - Retrieving information of multi-processor environment and
>> MP-related status of
>> + specific processors.
>> + - Dispatching user-provided function to APs.
>> + - Maintain MP-related processor status.
>> +
>> + The MP Services Protocol must be produced on any system with more
>> than one logical
>> + processor.
>> +
>> + The Protocol is available only during boot time.
>> +
>> + MP Services Protocol is hardware-independent. Most of the logic of
>> this protocol
>> + is architecturally neutral. It abstracts the multi-processor
>> environment and
>> + status of processors, and provides interfaces to retrieve
>> information, maintain,
>> + and dispatch.
>> +
>> + MP Services Protocol may be consumed by ACPI module. The ACPI
>> module may use this
>> + protocol to retrieve data that are needed for an MP platform and
>> report them to OS.
>> + MP Services Protocol may also be used to program and configure
>> processors, such
>> + as MTRR synchronization for memory space attributes setting in DXE
>> Services.
>> + MP Services Protocol may be used by non-CPU DXE drivers to speed
>> up platform boot
>> + by taking advantage of the processing capabilities of the APs, for
>> example, using
>> + APs to help test system memory in parallel with other device
>> initialization.
>> + Diagnostics applications may also use this protocol for
>> multi-processor.
>> +
>> + Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights
>> reserved.<BR>
>> + SPDX-License-Identifier: BSD-2-Clause-Patent
>> +
>> +**/
>> +
>> +#include <PiDxe.h>
>> +
>> +#include <Library/ArmLib.h>
>> +#include <Library/ArmMmuLib.h>
>> +#include <Library/ArmPlatformLib.h>
>> +#include <Library/ArmSmcLib.h>
>> +#include <Library/BaseMemoryLib.h>
>> +#include <Library/CacheMaintenanceLib.h>
>> +#include <Library/CpuExceptionHandlerLib.h>
>> +#include <Library/DebugLib.h>
>> +#include <Library/HobLib.h>
>> +#include <Library/MemoryAllocationLib.h>
>> +#include <Library/UefiBootServicesTableLib.h>
>> +#include <Library/UefiLib.h>
>> +#include <IndustryStandard/ArmStdSmc.h>
>> +#include <Ppi/ArmMpCoreInfo.h>
>> +#include <Protocol/LoadedImage.h>
>> +
>> +#include "MpServicesInternal.h"
>> +
>> +#define POLL_INTERVAL_US 50000
>> +
>> +STATIC CPU_MP_DATA mCpuMpData;
>> +STATIC BOOLEAN mNonBlockingModeAllowed;
>> +UINT64 *gApStacksBase;
>> +UINT64 *gProcessorIDs;
>> +CONST UINT64 gApStackSize = AP_STACK_SIZE;
>> +
>> +STATIC
>> +BOOLEAN
>> +IsCurrentProcessorBSP (
>> + VOID
>> + );
>> +
>> +/** Turns on the specified core using PSCI and executes the
>> user-supplied
>> + function that's been configured via a previous call to
>> SetApProcedure.
>> +
>> + @param ProcessorIndex The index of the core to turn on.
>> +
>> + @retval EFI_SUCCESS Success.
>> + @retval EFI_DEVICE_ERROR The processor could not be turned on.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +EFIAPI
>> +DispatchCpu (
>> + IN UINTN ProcessorIndex
>> + )
>> +{
>> + ARM_SMC_ARGS Args;
>> + EFI_STATUS Status;
>> +
>> + Status = EFI_SUCCESS;
>> +
>> + mCpuMpData.CpuData[ProcessorIndex].State = CpuStateBusy;
>> +
>> + /* Turn the AP on */
>> + if (sizeof (Args.Arg0) == sizeof (UINT32)) {
>> + Args.Arg0 = ARM_SMC_ID_PSCI_CPU_ON_AARCH32;
>> + } else {
>> + Args.Arg0 = ARM_SMC_ID_PSCI_CPU_ON_AARCH64;
>> + }
>> +
>> + Args.Arg1 = gProcessorIDs[ProcessorIndex];
>> + Args.Arg2 = (UINTN)ApEntryPoint;
>> +
>> + mCpuMpData.CpuData[ProcessorIndex].Tcr = ArmGetTCR ();
>> + mCpuMpData.CpuData[ProcessorIndex].Mair = ArmGetMAIR ();
>> + mCpuMpData.CpuData[ProcessorIndex].Ttbr0 = ArmGetTTBR0BaseAddress ();
>> + WriteBackDataCacheRange (&mCpuMpData.CpuData[ProcessorIndex],
>> sizeof (CPU_AP_DATA));
>> +
>> + ArmCallSmc (&Args);
>> +
>> + if (Args.Arg0 != ARM_SMC_PSCI_RET_SUCCESS) {
>> + DEBUG ((DEBUG_ERROR, "PSCI_CPU_ON call failed: %d\n", Args.Arg0));
>> + Status = EFI_DEVICE_ERROR;
>> + }
>> +
>> + return Status;
>> +}
>> +
>> +/** Returns whether the specified processor is the BSP.
>> +
>> + @param[in] ProcessorIndex The index the processor to check.
>> +
>> + @return TRUE if the processor is the BSP, FALSE otherwise.
>> +**/
>> +STATIC
>> +BOOLEAN
>> +IsProcessorBSP (
>> + UINTN ProcessorIndex
>> + )
>> +{
>> + EFI_PROCESSOR_INFORMATION *CpuInfo;
>> +
>> + CpuInfo = &mCpuMpData.CpuData[ProcessorIndex].Info;
>> +
>> + return (CpuInfo->StatusFlag & PROCESSOR_AS_BSP_BIT) != 0;
>> +}
>> +
>> +/** Get the Application Processors state.
>> +
>> + @param[in] CpuData The pointer to CPU_AP_DATA of specified AP.
>> +
>> + @return The AP status.
>> +**/
>> +CPU_STATE
>> +GetApState (
>> + IN CPU_AP_DATA *CpuData
>> + )
>> +{
>> + return CpuData->State;
>> +}
>> +
>> +/** Configures the processor context with the user-supplied
>> procedure and
>> + argument.
>> +
>> + @param CpuData The processor context.
>> + @param Procedure The user-supplied procedure.
>> + @param ProcedureArgument The user-supplied procedure argument.
>> +
>> +**/
>> +STATIC
>> +VOID
>> +SetApProcedure (
>> + IN CPU_AP_DATA *CpuData,
>> + IN EFI_AP_PROCEDURE Procedure,
>> + IN VOID *ProcedureArgument
>> + )
>> +{
>> + ASSERT (CpuData != NULL);
>> + ASSERT (Procedure != NULL);
>> +
>> + CpuData->Parameter = ProcedureArgument;
>> + CpuData->Procedure = Procedure;
>> +}
>> +
>> +/** Returns the index of the next processor that is blocked.
>> +
>> + @param[out] NextNumber The index of the next blocked processor.
>> +
>> + @retval EFI_SUCCESS Successfully found the next blocked processor.
>> + @retval EFI_NOT_FOUND There are no blocked processors.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +GetNextBlockedNumber (
>> + OUT UINTN *NextNumber
>> + )
>> +{
>> + UINTN Index;
>> + CPU_STATE State;
>> + CPU_AP_DATA *CpuData;
>> +
>> + for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
>> + CpuData = &mCpuMpData.CpuData[Index];
>> + if (IsProcessorBSP (Index)) {
>> + // Skip BSP
>> + continue;
>> + }
>> +
>> + State = CpuData->State;
>> +
>> + if (State == CpuStateBlocked) {
>> + *NextNumber = Index;
>> + return EFI_SUCCESS;
>> + }
>> + }
>> +
>> + return EFI_NOT_FOUND;
>> +}
>> +
>> +/** Stalls the BSP for the minimum of POLL_INTERVAL_US and Timeout.
>> +
>> + @param[in] Timeout The time limit in microseconds remaining for
>> + APs to return from Procedure.
>> +
>> + @retval StallTime Time of execution stall.
>> +**/
>> +STATIC
>> +UINTN
>> +CalculateAndStallInterval (
>> + IN UINTN Timeout
>> + )
>> +{
>> + UINTN StallTime;
>> +
>> + if ((Timeout < POLL_INTERVAL_US) && (Timeout != 0)) {
>> + StallTime = Timeout;
>> + } else {
>> + StallTime = POLL_INTERVAL_US;
>> + }
>> +
>> + gBS->Stall (StallTime);
>> +
>> + return StallTime;
>> +}
>> +
>> +/**
>> + This service retrieves the number of logical processor in the
>> platform
>> + and the number of those logical processors that are enabled on
>> this boot.
>> + This service may only be called from the BSP.
>> +
>> + This function is used to retrieve the following information:
>> + - The number of logical processors that are present in the system.
>> + - The number of enabled logical processors in the system at the
>> instant
>> + this call is made.
>> +
>> + Because MP Service Protocol provides services to enable and
>> disable processors
>> + dynamically, the number of enabled logical processors may vary
>> during the
>> + course of a boot session.
>> +
>> + If this service is called from an AP, then EFI_DEVICE_ERROR is
>> returned.
>> + If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
>> + EFI_INVALID_PARAMETER is returned. Otherwise, the total number of
>> processors
>> + is returned in NumberOfProcessors, the number of currently enabled
>> processor
>> + is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is
>> returned.
>> +
>> + @param[in] This A pointer to the
>> + EFI_MP_SERVICES_PROTOCOL instance.
>> + @param[out] NumberOfProcessors Pointer to the total
>> number of logical
>> + processors in the system,
>> including
>> + the BSP and disabled APs.
>> + @param[out] NumberOfEnabledProcessors Pointer to the number of
>> enabled
>> + logical processors that
>> exist in the
>> + system, including the BSP.
>> +
>> + @retval EFI_SUCCESS The number of logical processors
>> and enabled
>> + logical processors was retrieved.
>> + @retval EFI_DEVICE_ERROR The calling processor is an AP.
>> + @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL.
>> + @retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +EFIAPI
>> +GetNumberOfProcessors (
>> + IN EFI_MP_SERVICES_PROTOCOL *This,
>> + OUT UINTN *NumberOfProcessors,
>> + OUT UINTN *NumberOfEnabledProcessors
>> + )
>> +{
>> + if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors ==
>> NULL)) {
>> + return EFI_INVALID_PARAMETER;
>> + }
>> +
>> + if (!IsCurrentProcessorBSP ()) {
>> + return EFI_DEVICE_ERROR;
>> + }
>> +
>> + *NumberOfProcessors = mCpuMpData.NumberOfProcessors;
>> + *NumberOfEnabledProcessors = mCpuMpData.NumberOfEnabledProcessors;
>> + return EFI_SUCCESS;
>> +}
>> +
>> +/**
>> + Gets detailed MP-related information on the requested processor at
>> the
>> + instant this call is made. This service may only be called from
>> the BSP.
>> +
>> + This service retrieves detailed MP-related information about any
>> processor
>> + on the platform. Note the following:
>> + - The processor information may change during the course of a
>> boot session.
>> + - The information presented here is entirely MP related.
>> +
>> + Information regarding the number of caches and their sizes,
>> frequency of
>> + operation, slot numbers is all considered platform-related
>> information and is
>> + not provided by this service.
>> +
>> + @param[in] This A pointer to the
>> EFI_MP_SERVICES_PROTOCOL
>> + instance.
>> + @param[in] ProcessorIndex The index of the processor.
>> + @param[out] ProcessorInfoBuffer A pointer to the buffer where
>> information
>> + for the requested processor is
>> deposited.
>> +
>> + @retval EFI_SUCCESS Processor information was returned.
>> + @retval EFI_DEVICE_ERROR The calling processor is an AP.
>> + @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
>> + @retval EFI_NOT_FOUND The processor with the handle
>> specified by
>> + ProcessorNumber does not exist in
>> the platform.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +EFIAPI
>> +GetProcessorInfo (
>> + IN EFI_MP_SERVICES_PROTOCOL *This,
>> + IN UINTN ProcessorIndex,
>> + OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
>> + )
>> +{
>> + if (ProcessorInfoBuffer == NULL) {
>> + return EFI_INVALID_PARAMETER;
>> + }
>> +
>> + if (!IsCurrentProcessorBSP ()) {
>> + return EFI_DEVICE_ERROR;
>> + }
>> +
>> + ProcessorIndex &= ~CPU_V2_EXTENDED_TOPOLOGY;
>> +
>> + if (ProcessorIndex >= mCpuMpData.NumberOfProcessors) {
>> + return EFI_NOT_FOUND;
>> + }
>> +
>> + CopyMem (
>> + ProcessorInfoBuffer,
>> + &mCpuMpData.CpuData[ProcessorIndex],
>> + sizeof (EFI_PROCESSOR_INFORMATION)
>> + );
>> + return EFI_SUCCESS;
>> +}
>> +
>> +/**
>> + This service executes a caller provided function on all enabled
>> APs. APs can
>> + run either simultaneously or one at a time in sequence. This
>> service supports
>> + both blocking and non-blocking requests. The non-blocking requests
>> use EFI
>> + events so the BSP can detect when the APs have finished. This
>> service may only
>> + be called from the BSP.
>> +
>> + This function is used to dispatch all the enabled APs to the function
>> + specified by Procedure. If any enabled AP is busy, then
>> EFI_NOT_READY is
>> + returned immediately and Procedure is not started on any AP.
>> +
>> + If SingleThread is TRUE, all the enabled APs execute the function
>> specified by
>> + Procedure one by one, in ascending order of processor handle number.
>> + Otherwise, all the enabled APs execute the function specified by
>> Procedure
>> + simultaneously.
>> +
>> + If WaitEvent is NULL, execution is in blocking mode. The BSP waits
>> until all
>> + APs finish or TimeoutInMicroseconds expires. Otherwise, execution
>> is in
>> + non-blocking mode, and the BSP returns from this service without
>> waiting for
>> + APs. If a non-blocking mode is requested after the UEFI Event
>> + EFI_EVENT_GROUP_READY_TO_BOOT is signaled, then EFI_UNSUPPORTED
>> must be
>> + returned.
>> +
>> + If the timeout specified by TimeoutInMicroseconds expires before
>> all APs
>> + return from Procedure, then Procedure on the failed APs is
>> terminated.
>> + All enabled APs are always available for further calls to
>> + EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
>> + EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not
>> NULL, its
>> + content points to the list of processor handle numbers in which
>> Procedure was
>> + terminated.
>> +
>> + Note: It is the responsibility of the consumer of the
>> + EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() to make sure that the
>> nature of the
>> + code that is executed on the BSP and the dispatched APs is well
>> controlled.
>> + The MP Services Protocol does not guarantee that the Procedure
>> function is
>> + MP-safe. Hence, the tasks that can be run in parallel are limited
>> to certain
>> + independent tasks and well-controlled exclusive code. EFI services
>> and
>> + protocols may not be called by APs unless otherwise specified.
>> +
>> + In blocking execution mode, BSP waits until all APs finish or
>> + TimeoutInMicroseconds expires.
>> +
>> + In non-blocking execution mode, BSP is freed to return to the
>> caller and then
>> + proceed to the next task without having to wait for APs. The
>> following
>> + sequence needs to occur in a non-blocking execution mode:
>> +
>> + -# The caller that intends to use this MP Services Protocol in
>> non-blocking
>> + mode creates WaitEvent by calling the EFI CreateEvent()
>> service. The
>> + caller invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If
>> the parameter
>> + WaitEvent is not NULL, then StartupAllAPs() executes in
>> non-blocking
>> + mode. It requests the function specified by Procedure to be
>> started on
>> + all the enabled APs, and releases the BSP to continue with
>> other tasks.
>> + -# The caller can use the CheckEvent() and WaitForEvent()
>> services to check
>> + the state of the WaitEvent created in step 1.
>> + -# When the APs complete their task or TimeoutInMicroSecondss
>> expires, the
>> + MP Service signals WaitEvent by calling the EFI SignalEvent()
>> function.
>> + If FailedCpuList is not NULL, its content is available when
>> WaitEvent is
>> + signaled. If all APs returned from Procedure prior to the
>> timeout, then
>> + FailedCpuList is set to NULL. If not all APs return from
>> Procedure before
>> + the timeout, then FailedCpuList is filled in with the list of
>> the failed
>> + APs. The buffer is allocated by MP Service Protocol using
>> AllocatePool().
>> + It is the caller's responsibility to free the buffer with
>> FreePool()
>> + service.
>> + -# This invocation of SignalEvent() function informs the caller
>> that invoked
>> + EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs
>> + completed the specified task or a timeout occurred. The
>> contents of
>> + FailedCpuList can be examined to determine which APs did not
>> complete the
>> + specified task prior to the timeout.
>> +
>> + @param[in] This A pointer to the
>> EFI_MP_SERVICES_PROTOCOL
>> + instance.
>> + @param[in] Procedure A pointer to the function to
>> be run on
>> + enabled APs of the system. See
>> type
>> + EFI_AP_PROCEDURE.
>> + @param[in] SingleThread If TRUE, then all the enabled
>> APs execute
>> + the function specified by
>> Procedure one by
>> + one, in ascending order of
>> processor
>> + handle number. If FALSE, then
>> all the
>> + enabled APs execute the
>> function specified
>> + by Procedure simultaneously.
>> + @param[in] WaitEvent The event created by the
>> caller with
>> + CreateEvent() service. If it
>> is NULL,
>> + then execute in blocking mode.
>> BSP waits
>> + until all APs finish or
>> + TimeoutInMicroseconds
>> expires. If it's
>> + not NULL, then execute in
>> non-blocking
>> + mode. BSP requests the
>> function specified
>> + by Procedure to be started on
>> all the
>> + enabled APs, and go on executing
>> + immediately. If all return
>> from Procedure,
>> + or TimeoutInMicroseconds
>> expires, this
>> + event is signaled. The BSP can
>> use the
>> + CheckEvent() or WaitForEvent()
>> + services to check the state of
>> event. Type
>> + EFI_EVENT is defined in
>> CreateEvent() in
>> + the Unified Extensible
>> Firmware Interface
>> + Specification.
>> + @param[in] TimeoutInMicroseconds Indicates the time limit in
>> microseconds
>> + for APs to return from
>> Procedure, either
>> + for blocking or non-blocking
>> mode. Zero
>> + means infinity. If the
>> timeout expires
>> + before all APs return from
>> Procedure, then
>> + Procedure on the failed APs is
>> terminated.
>> + All enabled APs are available
>> for next
>> + function assigned by
>> + EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
>> + or
>> EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
>> + If the timeout expires in
>> blocking mode,
>> + BSP returns EFI_TIMEOUT. If
>> the timeout
>> + expires in non-blocking mode,
>> WaitEvent
>> + is signaled with SignalEvent().
>> + @param[in] ProcedureArgument The parameter passed into
>> Procedure for
>> + all APs.
>> + @param[out] FailedCpuList If NULL, this parameter is
>> ignored.
>> + Otherwise, if all APs finish
>> successfully,
>> + then its content is set to
>> NULL. If not
>> + all APs finish before timeout
>> expires,
>> + then its content is set to
>> address of the
>> + buffer holding handle numbers
>> of the
>> + failed APs.
>> + The buffer is allocated by MP
>> Service
>> + Protocol, and it's the caller's
>> + responsibility to free the
>> buffer with
>> + FreePool() service.
>> + In blocking mode, it is ready for
>> + consumption when the call
>> returns. In
>> + non-blocking mode, it is ready
>> when
>> + WaitEvent is signaled. The
>> list of failed
>> + CPU is terminated by
>> END_OF_CPU_LIST.
>> +
>> + @retval EFI_SUCCESS In blocking mode, all APs have
>> finished before
>> + the timeout expired.
>> + @retval EFI_SUCCESS In non-blocking mode, function has
>> been
>> + dispatched to all enabled APs.
>> + @retval EFI_UNSUPPORTED A non-blocking mode request was
>> made after the
>> + UEFI event
>> EFI_EVENT_GROUP_READY_TO_BOOT was
>> + signaled.
>> + @retval EFI_DEVICE_ERROR Caller processor is AP.
>> + @retval EFI_NOT_STARTED No enabled APs exist in the system.
>> + @retval EFI_NOT_READY Any enabled APs are busy.
>> + @retval EFI_TIMEOUT In blocking mode, the timeout
>> expired before
>> + all enabled APs have finished.
>> + @retval EFI_INVALID_PARAMETER Procedure is NULL.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +EFIAPI
>> +StartupAllAPs (
>> + IN EFI_MP_SERVICES_PROTOCOL *This,
>> + IN EFI_AP_PROCEDURE Procedure,
>> + IN BOOLEAN SingleThread,
>> + IN EFI_EVENT WaitEvent OPTIONAL,
>> + IN UINTN TimeoutInMicroseconds,
>> + IN VOID *ProcedureArgument OPTIONAL,
>> + OUT UINTN **FailedCpuList OPTIONAL
>> + )
>> +{
>> + EFI_STATUS Status;
>> +
>> + if (!IsCurrentProcessorBSP ()) {
>> + return EFI_DEVICE_ERROR;
>> + }
>> +
>> + if (mCpuMpData.NumberOfProcessors == 1) {
>> + return EFI_NOT_STARTED;
>> + }
>> +
>> + if (Procedure == NULL) {
>> + return EFI_INVALID_PARAMETER;
>> + }
>> +
>> + if ((WaitEvent != NULL) && !mNonBlockingModeAllowed) {
>> + return EFI_UNSUPPORTED;
>> + }
>> +
>> + if (FailedCpuList != NULL) {
>> + mCpuMpData.FailedList = AllocateZeroPool (
>> + (mCpuMpData.NumberOfProcessors + 1) *
>> + sizeof (UINTN)
>> + );
>> + if (mCpuMpData.FailedList == NULL) {
>> + return EFI_OUT_OF_RESOURCES;
>> + }
>> +
>> + SetMemN (
>> + mCpuMpData.FailedList,
>> + (mCpuMpData.NumberOfProcessors + 1) *
>> + sizeof (UINTN),
>> + END_OF_CPU_LIST
>> + );
>> + mCpuMpData.FailedListIndex = 0;
>> + *FailedCpuList = mCpuMpData.FailedList;
>> + }
>> +
>> + StartupAllAPsPrepareState (SingleThread);
>> +
>> + if (WaitEvent != NULL) {
>> + Status = StartupAllAPsWithWaitEvent (
>> + Procedure,
>> + ProcedureArgument,
>> + WaitEvent,
>> + TimeoutInMicroseconds,
>> + SingleThread,
>> + FailedCpuList
>> + );
>> +
>> + if (EFI_ERROR (Status) && (FailedCpuList != NULL)) {
>> + if (mCpuMpData.FailedListIndex == 0) {
>> + FreePool (*FailedCpuList);
>> + *FailedCpuList = NULL;
>> + }
>> + }
>> + } else {
>> + Status = StartupAllAPsNoWaitEvent (
>> + Procedure,
>> + ProcedureArgument,
>> + TimeoutInMicroseconds,
>> + SingleThread,
>> + FailedCpuList
>> + );
>> +
>> + if (FailedCpuList != NULL) {
>> + if (mCpuMpData.FailedListIndex == 0) {
>> + FreePool (*FailedCpuList);
>> + *FailedCpuList = NULL;
>> + }
>> + }
>> + }
>> +
>> + return Status;
>> +}
>> +
>> +/**
>> + This service lets the caller get one enabled AP to execute a
>> caller-provided
>> + function. The caller can request the BSP to either wait for the
>> completion
>> + of the AP or just proceed with the next task by using the EFI
>> event mechanism.
>> + See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on
>> non-blocking
>> + execution support. This service may only be called from the BSP.
>> +
>> + This function is used to dispatch one enabled AP to the function
>> specified by
>> + Procedure passing in the argument specified by ProcedureArgument.
>> If WaitEvent
>> + is NULL, execution is in blocking mode. The BSP waits until the AP
>> finishes or
>> + TimeoutInMicroSecondss expires. Otherwise, execution is in
>> non-blocking mode.
>> + BSP proceeds to the next task without waiting for the AP. If a
>> non-blocking mode
>> + is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is
>> signaled,
>> + then EFI_UNSUPPORTED must be returned.
>> +
>> + If the timeout specified by TimeoutInMicroseconds expires before
>> the AP returns
>> + from Procedure, then execution of Procedure by the AP is
>> terminated. The AP is
>> + available for subsequent calls to
>> EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
>> + EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
>> +
>> + @param[in] This A pointer to the
>> EFI_MP_SERVICES_PROTOCOL
>> + instance.
>> + @param[in] Procedure A pointer to the function to
>> be run on
>> + enabled APs of the system. See
>> type
>> + EFI_AP_PROCEDURE.
>> + @param[in] ProcessorNumber The handle number of the AP.
>> The range is
>> + from 0 to the total number of
>> logical
>> + processors minus 1. The total
>> number of
>> + logical processors can be
>> retrieved by
>> + EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
>> + @param[in] WaitEvent The event created by the
>> caller with CreateEvent()
>> + service. If it is NULL, then
>> execute in
>> + blocking mode. BSP waits until
>> all APs finish
>> + or TimeoutInMicroseconds
>> expires. If it's
>> + not NULL, then execute in
>> non-blocking mode.
>> + BSP requests the function
>> specified by
>> + Procedure to be started on all
>> the enabled
>> + APs, and go on executing
>> immediately. If
>> + all return from Procedure or
>> TimeoutInMicroseconds
>> + expires, this event is
>> signaled. The BSP
>> + can use the CheckEvent() or
>> WaitForEvent()
>> + services to check the state of
>> event. Type
>> + EFI_EVENT is defined in
>> CreateEvent() in
>> + the Unified Extensible
>> Firmware Interface
>> + Specification.
>> + @param[in] TimeoutInMicroseconds Indicates the time limit in
>> microseconds for
>> + APs to return from Procedure,
>> either for
>> + blocking or non-blocking mode.
>> Zero means
>> + infinity. If the timeout
>> expires before
>> + all APs return from Procedure,
>> then Procedure
>> + on the failed APs is
>> terminated. All enabled
>> + APs are available for next
>> function assigned
>> + by
>> EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
>> + or
>> EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
>> + If the timeout expires in
>> blocking mode,
>> + BSP returns EFI_TIMEOUT. If
>> the timeout
>> + expires in non-blocking mode,
>> WaitEvent
>> + is signaled with SignalEvent().
>> + @param[in] ProcedureArgument The parameter passed into
>> Procedure for
>> + all APs.
>> + @param[out] Finished If NULL, this parameter is
>> ignored. In
>> + blocking mode, this parameter
>> is ignored.
>> + In non-blocking mode, if AP
>> returns from
>> + Procedure before the timeout
>> expires, its
>> + content is set to TRUE.
>> Otherwise, the
>> + value is set to FALSE. The
>> caller can
>> + determine if the AP returned
>> from Procedure
>> + by evaluating this value.
>> +
>> + @retval EFI_SUCCESS In blocking mode, specified AP
>> finished before
>> + the timeout expires.
>> + @retval EFI_SUCCESS In non-blocking mode, the function
>> has been
>> + dispatched to specified AP.
>> + @retval EFI_UNSUPPORTED A non-blocking mode request was
>> made after the
>> + UEFI event
>> EFI_EVENT_GROUP_READY_TO_BOOT was
>> + signaled.
>> + @retval EFI_DEVICE_ERROR The calling processor is an AP.
>> + @retval EFI_TIMEOUT In blocking mode, the timeout
>> expired before
>> + the specified AP has finished.
>> + @retval EFI_NOT_READY The specified AP is busy.
>> + @retval EFI_NOT_FOUND The processor with the handle
>> specified by
>> + ProcessorNumber does not exist.
>> + @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP
>> or disabled AP.
>> + @retval EFI_INVALID_PARAMETER Procedure is NULL.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +EFIAPI
>> +StartupThisAP (
>> + IN EFI_MP_SERVICES_PROTOCOL *This,
>> + IN EFI_AP_PROCEDURE Procedure,
>> + IN UINTN ProcessorNumber,
>> + IN EFI_EVENT WaitEvent OPTIONAL,
>> + IN UINTN TimeoutInMicroseconds,
>> + IN VOID *ProcedureArgument OPTIONAL,
>> + OUT BOOLEAN *Finished OPTIONAL
>> + )
>> +{
>> + EFI_STATUS Status;
>> + UINTN Timeout;
>> + CPU_AP_DATA *CpuData;
>> +
>> + if (!IsCurrentProcessorBSP ()) {
>> + return EFI_DEVICE_ERROR;
>> + }
>> +
>> + if (Procedure == NULL) {
>> + return EFI_INVALID_PARAMETER;
>> + }
>> +
>> + if (ProcessorNumber >= mCpuMpData.NumberOfProcessors) {
>> + return EFI_NOT_FOUND;
>> + }
>> +
>> + CpuData = &mCpuMpData.CpuData[ProcessorNumber];
>> +
>> + if (IsProcessorBSP (ProcessorNumber)) {
>> + return EFI_INVALID_PARAMETER;
>> + }
>> +
>> + if (!IsProcessorEnabled (ProcessorNumber)) {
>> + return EFI_INVALID_PARAMETER;
>> + }
>> +
>> + if (GetApState (CpuData) != CpuStateIdle) {
>> + return EFI_NOT_READY;
>> + }
>> +
>> + if ((WaitEvent != NULL) && !mNonBlockingModeAllowed) {
>> + return EFI_UNSUPPORTED;
>> + }
>> +
>> + Timeout = TimeoutInMicroseconds;
>> +
>> + mCpuMpData.Timeout = TimeoutInMicroseconds;
>> + mCpuMpData.TimeTaken = 0;
>> + mCpuMpData.TimeoutActive = (BOOLEAN)(TimeoutInMicroseconds != 0);
>
> [KQ] Adding a timeout active flag is correct. However, I think each AP
> should have its own timeout related
> data (that is Timeout, TimeTaken and TimeoutActive). Because i.e. if
> this StartupThisAp call is used on AP 1 in
> a non-blocking mode, then a subsequent call on AP 2 is blocking, the
> common flag and timeout values will
> impact both cores, and create unintended timeout events.
>
>> +
>> + mCpuMpData.StartCount = 1;
>> + mCpuMpData.FinishCount = 0;
>> +
>> + SetApProcedure (
>> + CpuData,
>> + Procedure,
>> + ProcedureArgument
>> + );
>> +
>> + Status = DispatchCpu (ProcessorNumber);
>> + if (EFI_ERROR (Status)) {
>> + CpuData->State = CpuStateIdle;
>> + return EFI_NOT_READY;
>> + }
>> +
>> + if (WaitEvent != NULL) {
>> + // Non Blocking
>> + if (Finished != NULL) {
>> + mCpuMpData.SingleApFinished = Finished;
>> + *Finished = FALSE;
>> + }
>> +
>> + mCpuMpData.WaitEvent = WaitEvent;
>> + Status = gBS->SetTimer (
>> + CpuData->CheckThisAPEvent,
>> + TimerPeriodic,
>> + POLL_INTERVAL_US
>> + );
>> +
>> + return EFI_SUCCESS;
>> + }
>> +
>> + // Blocking
>> + while (TRUE) {
>> + if (GetApState (CpuData) == CpuStateFinished) {
>> + CpuData->State = CpuStateIdle;
>> + break;
>> + }
>> +
>> + if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) {
[KQ-2] This will make the core never being able to accept the subsequent
start up calls due to this CPU data state will
never be updated to CpuStateIdle. If this AP completes the job after
timeout, ApProcedure will only be able to transition
its state to CpuStateFinished. Should we add a timer (when there is a
timeout period specified) and use CpuData->CheckThisAPEvent
to check and try to sync the CPU states for this case?
>> + return EFI_TIMEOUT;
>> + }
>> +
>> + Timeout -= CalculateAndStallInterval (Timeout);
>> + }
>> +
>> + return EFI_SUCCESS;
>> +}
>> +
>> +/**
>> + This service switches the requested AP to be the BSP from that
>> point onward.
>> + This service changes the BSP for all purposes. This call can
>> only be
>> + performed by the current BSP.
>> +
>> + This service switches the requested AP to be the BSP from that
>> point onward.
>> + This service changes the BSP for all purposes. The new BSP can
>> take over the
>> + execution of the old BSP and continue seamlessly from where the
>> old one left
>> + off. This service may not be supported after the UEFI Event
>> EFI_EVENT_GROUP_READY_TO_BOOT
>> + is signaled.
>> +
>> + If the BSP cannot be switched prior to the return from this
>> service, then
>> + EFI_UNSUPPORTED must be returned.
>> +
>> + @param[in] This A pointer to the
>> EFI_MP_SERVICES_PROTOCOL instance.
>> + @param[in] ProcessorNumber The handle number of AP that is to
>> become the new
>> + BSP. The range is from 0 to the total
>> number of
>> + logical processors minus 1. The total
>> number of
>> + logical processors can be retrieved by
>> + EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
>> + @param[in] EnableOldBSP If TRUE, then the old BSP will be
>> listed as an
>> + enabled AP. Otherwise, it will be
>> disabled.
>> +
>> + @retval EFI_SUCCESS BSP successfully switched.
>> + @retval EFI_UNSUPPORTED Switching the BSP cannot be
>> completed prior to
>> + this service returning.
>> + @retval EFI_UNSUPPORTED Switching the BSP is not supported.
>> + @retval EFI_SUCCESS The calling processor is an AP.
>> + @retval EFI_NOT_FOUND The processor with the handle
>> specified by
>> + ProcessorNumber does not exist.
>> + @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the
>> current BSP or
>> + a disabled AP.
>> + @retval EFI_NOT_READY The specified AP is busy.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +EFIAPI
>> +SwitchBSP (
>> + IN EFI_MP_SERVICES_PROTOCOL *This,
>> + IN UINTN ProcessorNumber,
>> + IN BOOLEAN EnableOldBSP
>> + )
>> +{
>> + return EFI_UNSUPPORTED;
>> +}
>> +
>> +/**
>> + This service lets the caller enable or disable an AP from this
>> point onward.
>> + This service may only be called from the BSP.
>> +
>> + This service allows the caller enable or disable an AP from this
>> point onward.
>> + The caller can optionally specify the health status of the AP by
>> Health. If
>> + an AP is being disabled, then the state of the disabled AP is
>> implementation
>> + dependent. If an AP is enabled, then the implementation must
>> guarantee that a
>> + complete initialization sequence is performed on the AP, so the AP
>> is in a state
>> + that is compatible with an MP operating system. This service may
>> not be supported
>> + after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled.
>> +
>> + If the enable or disable AP operation cannot be completed prior to
>> the return
>> + from this service, then EFI_UNSUPPORTED must be returned.
>> +
>> + @param[in] This A pointer to the
>> EFI_MP_SERVICES_PROTOCOL instance.
>> + @param[in] ProcessorNumber The handle number of AP that is to
>> become the new
>> + BSP. The range is from 0 to the total
>> number of
>> + logical processors minus 1. The total
>> number of
>> + logical processors can be retrieved by
>> + EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
>> + @param[in] EnableAP Specifies the new state for the
>> processor for
>> + enabled, FALSE for disabled.
>> + @param[in] HealthFlag If not NULL, a pointer to a value
>> that specifies
>> + the new health status of the AP. This
>> flag
>> + corresponds to StatusFlag defined in
>> + EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
>> + the PROCESSOR_HEALTH_STATUS_BIT is
>> used. All other
>> + bits are ignored. If it is NULL,
>> this parameter
>> + is ignored.
>> +
>> + @retval EFI_SUCCESS The specified AP was enabled or
>> disabled successfully.
>> + @retval EFI_UNSUPPORTED Enabling or disabling an AP cannot
>> be completed
>> + prior to this service returning.
>> + @retval EFI_UNSUPPORTED Enabling or disabling an AP is not
>> supported.
>> + @retval EFI_DEVICE_ERROR The calling processor is an AP.
>> + @retval EFI_NOT_FOUND Processor with the handle
>> specified by ProcessorNumber
>> + does not exist.
>> + @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +EFIAPI
>> +EnableDisableAP (
>> + IN EFI_MP_SERVICES_PROTOCOL *This,
>> + IN UINTN ProcessorNumber,
>> + IN BOOLEAN EnableAP,
>> + IN UINT32 *HealthFlag OPTIONAL
>> + )
>> +{
>> + UINTN StatusFlag;
>> + CPU_AP_DATA *CpuData;
>> +
>> + StatusFlag = mCpuMpData.CpuData[ProcessorNumber].Info.StatusFlag;
>> + CpuData = &mCpuMpData.CpuData[ProcessorNumber];
>> +
>> + if (!IsCurrentProcessorBSP ()) {
>> + return EFI_DEVICE_ERROR;
>> + }
>> +
>> + if (ProcessorNumber >= mCpuMpData.NumberOfProcessors) {
>> + return EFI_NOT_FOUND;
>> + }
>> +
>> + if (IsProcessorBSP (ProcessorNumber)) {
>> + return EFI_INVALID_PARAMETER;
>> + }
>> +
>> + if (GetApState (CpuData) != CpuStateIdle) {
>> + return EFI_UNSUPPORTED;
>> + }
>> +
>> + if (EnableAP) {
>> + if (!IsProcessorEnabled (ProcessorNumber)) {
>> + mCpuMpData.NumberOfEnabledProcessors++;
>> + }
>> +
>> + StatusFlag |= PROCESSOR_ENABLED_BIT;
>> + } else {
>> + if (IsProcessorEnabled (ProcessorNumber)) {
>> + mCpuMpData.NumberOfEnabledProcessors--;
>> + }
>> +
>> + StatusFlag &= ~PROCESSOR_ENABLED_BIT;
>> + }
>> +
>> + if (HealthFlag != NULL) {
>> + StatusFlag &= ~PROCESSOR_HEALTH_STATUS_BIT;
>> + StatusFlag |= (*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT);
>> + }
>> +
>> + mCpuMpData.CpuData[ProcessorNumber].Info.StatusFlag = StatusFlag;
>> + return EFI_SUCCESS;
>> +}
>> +
>> +/**
>> + This return the handle number for the calling processor. This
>> service may be
>> + called from the BSP and APs.
>> +
>> + This service returns the processor handle number for the calling
>> processor.
>> + The returned value is in the range from 0 to the total number of
>> logical
>> + processors minus 1. The total number of logical processors can be
>> retrieved
>> + with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This
>> service may be
>> + called from the BSP and APs. If ProcessorNumber is NULL, then
>> EFI_INVALID_PARAMETER
>> + is returned. Otherwise, the current processors handle number is
>> returned in
>> + ProcessorNumber, and EFI_SUCCESS is returned.
>> +
>> + @param[in] This A pointer to the
>> EFI_MP_SERVICES_PROTOCOL instance.
>> + @param[out] ProcessorNumber The handle number of AP that is to
>> become the new
>> + BSP. The range is from 0 to the total
>> number of
>> + logical processors minus 1. The total
>> number of
>> + logical processors can be retrieved by
>> + EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
>> +
>> + @retval EFI_SUCCESS The current processor handle
>> number was returned
>> + in ProcessorNumber.
>> + @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +EFIAPI
>> +WhoAmI (
>> + IN EFI_MP_SERVICES_PROTOCOL *This,
>> + OUT UINTN *ProcessorNumber
>> + )
>> +{
>> + UINTN Index;
>> + UINT64 ProcessorId;
>> +
>> + if (ProcessorNumber == NULL) {
>> + return EFI_INVALID_PARAMETER;
>> + }
>> +
>> + ProcessorId = GET_MPIDR_AFFINITY_BITS (ArmReadMpidr ());
>> + for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
>> + if (ProcessorId == gProcessorIDs[Index]) {
>> + *ProcessorNumber = Index;
>> + break;
>> + }
>> + }
>> +
>> + return EFI_SUCCESS;
>> +}
>> +
>> +STATIC EFI_MP_SERVICES_PROTOCOL mMpServicesProtocol = {
>> + GetNumberOfProcessors,
>> + GetProcessorInfo,
>> + StartupAllAPs,
>> + StartupThisAP,
>> + SwitchBSP,
>> + EnableDisableAP,
>> + WhoAmI
>> +};
>> +
>> +/** Adds the specified processor the list of failed processors.
>> +
>> + @param ProcessorIndex The processor index to add.
>> + @param ApState Processor state.
>> +
>> +**/
>> +STATIC
>> +VOID
>> +AddProcessorToFailedList (
>> + UINTN ProcessorIndex,
>> + CPU_STATE ApState
>> + )
>> +{
>> + UINTN Index;
>> + BOOLEAN Found;
>> +
>> + Found = FALSE;
>> +
>> + if ((mCpuMpData.FailedList == NULL) ||
>> + (ApState == CpuStateIdle) ||
>> + (ApState == CpuStateFinished) ||
>> + IsProcessorBSP (ProcessorIndex))
>> + {
>> + return;
>> + }
>> +
>> + // If we are retrying make sure we don't double count
>> + for (Index = 0; Index < mCpuMpData.FailedListIndex; Index++) {
>> + if (mCpuMpData.FailedList[Index] == ProcessorIndex) {
>> + Found = TRUE;
>> + break;
>> + }
>> + }
>> +
>> + /* If the CPU isn't already in the FailedList, add it */
>> + if (!Found) {
>> + mCpuMpData.FailedList[mCpuMpData.FailedListIndex++] =
>> ProcessorIndex;
>> + }
>> +}
>> +
>> +/** Handles the StartupAllAPs case where the timeout has occurred.
>> +
>> +**/
>> +STATIC
>> +VOID
>> +ProcessStartupAllAPsTimeout (
>> + VOID
>> + )
>> +{
>> + CPU_AP_DATA *CpuData;
>> + UINTN Index;
>> +
>> + if (mCpuMpData.FailedList == NULL) {
>> + return;
>> + }
>> +
>> + for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
>> + CpuData = &mCpuMpData.CpuData[Index];
>> + if (IsProcessorBSP (Index)) {
>> + // Skip BSP
>> + continue;
>> + }
>> +
>> + if (!IsProcessorEnabled (Index)) {
>> + // Skip Disabled processors
>> + continue;
>> + }
>> +
>> + CpuData = &mCpuMpData.CpuData[Index];
>> + AddProcessorToFailedList (Index, GetApState (CpuData));
>> + }
>> +}
>> +
>> +/** Updates the status of the APs.
>> +
>> + @param[in] ProcessorIndex The index of the AP to update.
>> +**/
>> +STATIC
>> +VOID
>> +UpdateApStatus (
>> + IN UINTN ProcessorIndex
>> + )
>> +{
>> + EFI_STATUS Status;
>> + CPU_AP_DATA *CpuData;
>> + CPU_AP_DATA *NextCpuData;
>> + CPU_STATE State;
>> + UINTN NextNumber;
>> +
>> + CpuData = &mCpuMpData.CpuData[ProcessorIndex];
>> +
>> + if (IsProcessorBSP (ProcessorIndex)) {
>> + // Skip BSP
>> + return;
>> + }
>> +
>> + if (!IsProcessorEnabled (ProcessorIndex)) {
>> + // Skip Disabled processors
>> + return;
>> + }
>> +
>> + State = GetApState (CpuData);
>> +
>> + switch (State) {
>> + case CpuStateFinished:
>> + if (mCpuMpData.SingleThread) {
>> + Status = GetNextBlockedNumber (&NextNumber);
>> + if (!EFI_ERROR (Status)) {
>> + NextCpuData = &mCpuMpData.CpuData[NextNumber];
>> +
>> + NextCpuData->State = CpuStateReady;
>> +
>> + SetApProcedure (
>> + NextCpuData,
>> + mCpuMpData.Procedure,
>> + mCpuMpData.ProcedureArgument
>> + );
>> +
>> + Status = DispatchCpu (NextNumber);
>> + if (!EFI_ERROR (Status)) {
>> + mCpuMpData.StartCount++;
>> + } else {
>> + AddProcessorToFailedList (NextNumber, NextCpuData->State);
>> + }
>> + }
>> + }
>> +
>> + CpuData->State = CpuStateIdle;
>> + mCpuMpData.FinishCount++;
>> + break;
>> +
>> + default:
>> + break;
>> + }
>> +}
>> +
>> +/**
>> + If a timeout is specified in StartupAllAps(), a timer is set,
>> which invokes
>> + this procedure periodically to check whether all APs have finished.
>> +
>> + @param[in] Event The WaitEvent the user supplied.
>> + @param[in] Context The event context.
>> +**/
>> +STATIC
>> +VOID
>> +EFIAPI
>> +CheckAllAPsStatus (
>> + IN EFI_EVENT Event,
>> + IN VOID *Context
>> + )
>> +{
>> + UINTN Index;
>> +
>> + mCpuMpData.TimeTaken += POLL_INTERVAL_US;
>> +
>> + for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
>> + UpdateApStatus (Index);
>> + }
>> +
>> + if (mCpuMpData.TimeoutActive && (mCpuMpData.TimeTaken >
>> mCpuMpData.Timeout)) {
>> + ProcessStartupAllAPsTimeout ();
>> +
>> + // Force terminal exit
>> + mCpuMpData.FinishCount = mCpuMpData.StartCount;
>> + }
>> +
>> + if (mCpuMpData.FinishCount != mCpuMpData.StartCount) {
>> + return;
>> + }
>> +
>> + gBS->SetTimer (
>> + mCpuMpData.CheckAllAPsEvent,
>> + TimerCancel,
>> + 0
>> + );
>> +
>> + if (mCpuMpData.FailedListIndex == 0) {
>> + if (mCpuMpData.FailedList != NULL) {
>> + // Since we don't have the original `FailedCpuList`
>> + // pointer here to set to NULL, don't free the
>> + // memory.
>> + }
>> + }
>> +
>> + gBS->SignalEvent (mCpuMpData.WaitEvent);
>> +}
>> +
>> +/** Invoked periodically via a timer to check the state of the
>> processor.
>> +
>> + @param Event The event supplied by the timer expiration.
>> + @param Context The processor context.
>> +
>> +**/
>> +STATIC
>> +VOID
>> +EFIAPI
>> +CheckThisAPStatus (
>> + IN EFI_EVENT Event,
>> + IN VOID *Context
>> + )
>> +{
>> + EFI_STATUS Status;
>> + CPU_AP_DATA *CpuData;
>> + CPU_STATE State;
>> +
>> + CpuData = Context;
>> +
>> + mCpuMpData.TimeTaken += POLL_INTERVAL_US;
>> +
>> + State = GetApState (CpuData);
>> +
>> + if (State == CpuStateFinished) {
>> + Status = gBS->SetTimer (CpuData->CheckThisAPEvent, TimerCancel, 0);
>> + ASSERT_EFI_ERROR (Status);
>> +
>> + if (mCpuMpData.SingleApFinished != NULL) {
>> + *mCpuMpData.SingleApFinished = TRUE;
>> + }
>> +
>> + if (mCpuMpData.WaitEvent != NULL) {
>> + Status = gBS->SignalEvent (mCpuMpData.WaitEvent);
>> + ASSERT_EFI_ERROR (Status);
>> + }
>> +
>> + CpuData->State = CpuStateIdle;
>> + }
>> +
>> + if (mCpuMpData.TimeoutActive && (mCpuMpData.TimeTaken >
>> mCpuMpData.Timeout)) {
> [KQ] Similar to the other comment, this is probably better using a
> per-core data to track elapsed time.
> On a side note, if this timeout ever occurs, this core will never be
> usable in next StartupThisAp calls due
> to this AP state will not be set to Idle even if the AP procedure is
> complete. Is this the intended behavior?
>> + Status = gBS->SetTimer (CpuData->CheckThisAPEvent, TimerCancel, 0);
>> + if (mCpuMpData.WaitEvent != NULL) {
>> + Status = gBS->SignalEvent (mCpuMpData.WaitEvent);
>> + ASSERT_EFI_ERROR (Status);
>> + }
>> + }
>> +}
>> +
>> +/**
>> + This function is called by all processors (both BSP and AP) once
>> and collects
>> + MP related data.
>> +
>> + @param BSP TRUE if the processor is the BSP.
>> + @param Mpidr The MPIDR for the specified processor. This
>> should be
>> + the full MPIDR and not only the affinity bits.
>> + @param ProcessorIndex The index of the processor.
>> +
>> + @return EFI_SUCCESS if the data for the processor collected and
>> filled in.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +FillInProcessorInformation (
>> + IN BOOLEAN BSP,
>> + IN UINTN Mpidr,
>> + IN UINTN ProcessorIndex
>> + )
>> +{
>> + EFI_PROCESSOR_INFORMATION *CpuInfo;
>> +
>> + CpuInfo = &mCpuMpData.CpuData[ProcessorIndex].Info;
>> +
>> + CpuInfo->ProcessorId = GET_MPIDR_AFFINITY_BITS (Mpidr);
>> + CpuInfo->StatusFlag = PROCESSOR_ENABLED_BIT |
>> PROCESSOR_HEALTH_STATUS_BIT;
>> +
>> + if (BSP) {
>> + CpuInfo->StatusFlag |= PROCESSOR_AS_BSP_BIT;
>> + }
>> +
>> + if ((Mpidr & MPIDR_MT_BIT) > 0) {
>> + CpuInfo->Location.Package = GET_MPIDR_AFF2 (Mpidr);
>> + CpuInfo->Location.Core = GET_MPIDR_AFF1 (Mpidr);
>> + CpuInfo->Location.Thread = GET_MPIDR_AFF0 (Mpidr);
>> +
>> + CpuInfo->ExtendedInformation.Location2.Package = GET_MPIDR_AFF3
>> (Mpidr);
>> + CpuInfo->ExtendedInformation.Location2.Die = GET_MPIDR_AFF2
>> (Mpidr);
>> + CpuInfo->ExtendedInformation.Location2.Core = GET_MPIDR_AFF1
>> (Mpidr);
>> + CpuInfo->ExtendedInformation.Location2.Thread = GET_MPIDR_AFF0
>> (Mpidr);
>> + } else {
>> + CpuInfo->Location.Package = GET_MPIDR_AFF1 (Mpidr);
>> + CpuInfo->Location.Core = GET_MPIDR_AFF0 (Mpidr);
>> + CpuInfo->Location.Thread = 0;
>> +
>> + CpuInfo->ExtendedInformation.Location2.Package = GET_MPIDR_AFF2
>> (Mpidr);
>> + CpuInfo->ExtendedInformation.Location2.Die = GET_MPIDR_AFF1
>> (Mpidr);
>> + CpuInfo->ExtendedInformation.Location2.Core = GET_MPIDR_AFF0
>> (Mpidr);
>> + CpuInfo->ExtendedInformation.Location2.Thread = 0;
>> + }
>> +
>> + mCpuMpData.CpuData[ProcessorIndex].State = BSP ? CpuStateBusy :
>> CpuStateIdle;
>> +
>> + mCpuMpData.CpuData[ProcessorIndex].Procedure = NULL;
>> + mCpuMpData.CpuData[ProcessorIndex].Parameter = NULL;
>> +
>> + return EFI_SUCCESS;
>> +}
>> +
>> +/** Initializes the MP Services system data
>> +
>> + @param NumberOfProcessors The number of processors, both BSP and AP.
>> + @param CoreInfo CPU information gathered earlier during
>> boot.
>> +
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +MpServicesInitialize (
>> + IN UINTN NumberOfProcessors,
>> + IN CONST ARM_CORE_INFO *CoreInfo
>> + )
>> +{
>> + EFI_STATUS Status;
>> + UINTN Index;
>> + EFI_EVENT ReadyToBootEvent;
>> + BOOLEAN IsBsp;
>> +
>> + //
>> + // Clear the data structure area first.
>> + //
>> + ZeroMem (&mCpuMpData, sizeof (CPU_MP_DATA));
>> + //
>> + // First BSP fills and inits all known values, including its own
>> records.
>> + //
>> + mCpuMpData.NumberOfProcessors = NumberOfProcessors;
>> + mCpuMpData.NumberOfEnabledProcessors = NumberOfProcessors;
>> +
>> + mCpuMpData.CpuData = AllocateZeroPool (
>> + mCpuMpData.NumberOfProcessors * sizeof
>> (CPU_AP_DATA)
>> + );
>> +
>> + if (mCpuMpData.CpuData == NULL) {
>> + return EFI_OUT_OF_RESOURCES;
>> + }
>> +
>> + /* Allocate one extra for the sentinel entry at the end */
>> + gProcessorIDs = AllocateZeroPool ((mCpuMpData.NumberOfProcessors +
>> 1) * sizeof (UINT64));
>> + ASSERT (gProcessorIDs != NULL);
>> +
>> + Status = gBS->CreateEvent (
>> + EVT_TIMER | EVT_NOTIFY_SIGNAL,
>> + TPL_CALLBACK,
>> + CheckAllAPsStatus,
>> + NULL,
>> + &mCpuMpData.CheckAllAPsEvent
>> + );
>> + ASSERT_EFI_ERROR (Status);
>> +
>> + gApStacksBase = AllocatePages (
>> + EFI_SIZE_TO_PAGES (
>> + mCpuMpData.NumberOfProcessors *
>> + gApStackSize
>> + )
>> + );
>> + ASSERT (gApStacksBase != NULL);
>> +
>> + for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
>> + if (GET_MPIDR_AFFINITY_BITS (ArmReadMpidr ()) ==
>> CoreInfo[Index].Mpidr) {
>> + IsBsp = TRUE;
>> + } else {
>> + IsBsp = FALSE;
>> + }
>> +
>> + FillInProcessorInformation (IsBsp, CoreInfo[Index].Mpidr, Index);
>> +
>> + gProcessorIDs[Index] = mCpuMpData.CpuData[Index].Info.ProcessorId;
>> +
>> + Status = gBS->CreateEvent (
>> + EVT_TIMER | EVT_NOTIFY_SIGNAL,
>> + TPL_CALLBACK,
>> + CheckThisAPStatus,
>> + (VOID *)&mCpuMpData.CpuData[Index],
>> + &mCpuMpData.CpuData[Index].CheckThisAPEvent
>> + );
>> + ASSERT_EFI_ERROR (Status);
>> + }
>> +
>> + gProcessorIDs[Index] = MAX_UINT64;
>> +
>> + //
>> + // The global pointer variables as well as the gProcessorIDs array
>> contents
>> + // are accessed by the other cores so we must clean them to the PoC
>> + //
>> + WriteBackDataCacheRange (&gProcessorIDs, sizeof (UINT64 *));
>> + WriteBackDataCacheRange (&gApStacksBase, sizeof (UINT64 *));
>> +
>> + WriteBackDataCacheRange (
>> + gProcessorIDs,
>> + (mCpuMpData.NumberOfProcessors + 1) * sizeof (UINT64)
>> + );
>> +
>> + mNonBlockingModeAllowed = TRUE;
>> +
>> + Status = EfiCreateEventReadyToBootEx (
>> + TPL_CALLBACK,
>> + ReadyToBootSignaled,
>> + NULL,
>> + &ReadyToBootEvent
>> + );
>> + ASSERT_EFI_ERROR (Status);
>> +
>> + return EFI_SUCCESS;
>> +}
>> +
>> +/**
>> + Event notification function called when the
>> EFI_EVENT_GROUP_READY_TO_BOOT is
>> + signaled. After this point, non-blocking mode is no longer allowed.
>> +
>> + @param Event Event whose notification function is being invoked.
>> + @param Context The pointer to the notification function's context,
>> + which is implementation-dependent.
>> +
>> +**/
>> +STATIC
>> +VOID
>> +EFIAPI
>> +ReadyToBootSignaled (
>> + IN EFI_EVENT Event,
>> + IN VOID *Context
>> + )
>> +{
>> + mNonBlockingModeAllowed = FALSE;
>> +}
>> +
>> +/** Initialize multi-processor support.
>> +
>> + @param ImageHandle Image handle.
>> + @param SystemTable System table.
>> +
>> + @return EFI_SUCCESS on success, or an error code.
>> +
>> +**/
>> +EFI_STATUS
>> +EFIAPI
>> +ArmPsciMpServicesDxeInitialize (
>> + IN EFI_HANDLE ImageHandle,
>> + IN EFI_SYSTEM_TABLE *SystemTable
>> + )
>> +{
>> + EFI_STATUS Status;
>> + EFI_HANDLE Handle;
>> + UINTN MaxCpus;
>> + EFI_LOADED_IMAGE_PROTOCOL *Image;
>> + EFI_HOB_GENERIC_HEADER *Hob;
>> + VOID *HobData;
>> + UINTN HobDataSize;
>> + CONST ARM_CORE_INFO *CoreInfo;
>> +
>> + MaxCpus = 1;
>> +
>> + Status = gBS->HandleProtocol (
>> + ImageHandle,
>> + &gEfiLoadedImageProtocolGuid,
>> + (VOID **)&Image
>> + );
>> + ASSERT_EFI_ERROR (Status);
>> +
>> + //
>> + // Parts of the code in this driver may be executed by other cores
>> running
>> + // with the MMU off so we need to ensure that everything is clean
>> to the
>> + // point of coherency (PoC)
>> + //
>> + WriteBackDataCacheRange (Image->ImageBase, Image->ImageSize);
>> +
>> + Hob = GetFirstGuidHob (&gArmMpCoreInfoGuid);
>> + if (Hob != NULL) {
>> + HobData = GET_GUID_HOB_DATA (Hob);
>> + HobDataSize = GET_GUID_HOB_DATA_SIZE (Hob);
>> + CoreInfo = (ARM_CORE_INFO *)HobData;
>> + MaxCpus = HobDataSize / sizeof (ARM_CORE_INFO);
>> + }
>> +
>> + if (MaxCpus == 1) {
>> + DEBUG ((DEBUG_WARN, "Trying to use EFI_MP_SERVICES_PROTOCOL on a
>> UP system"));
>> + // We are not MP so nothing to do
>> + return EFI_NOT_FOUND;
>> + }
>> +
>> + Status = MpServicesInitialize (MaxCpus, CoreInfo);
>> + if (Status != EFI_SUCCESS) {
>> + ASSERT_EFI_ERROR (Status);
>> + return Status;
>> + }
>> +
>> + //
>> + // Now install the MP services protocol.
>> + //
>> + Handle = NULL;
>> + Status = gBS->InstallMultipleProtocolInterfaces (
>> + &Handle,
>> + &gEfiMpServiceProtocolGuid,
>> + &mMpServicesProtocol,
>> + NULL
>> + );
>> + ASSERT_EFI_ERROR (Status);
>> +
>> + return Status;
>> +}
>> +
>> +/** AP exception handler.
>> +
>> + @param InterruptType The AArch64 CPU exception type.
>> + @param SystemContext System context.
>> +
>> +**/
>> +STATIC
>> +VOID
>> +EFIAPI
>> +ApExceptionHandler (
>> + IN CONST EFI_EXCEPTION_TYPE InterruptType,
>> + IN CONST EFI_SYSTEM_CONTEXT SystemContext
>> + )
>> +{
>> + ARM_SMC_ARGS Args;
>> + UINT64 Mpidr;
>> + UINTN Index;
>> + UINTN ProcessorIndex;
>> +
>> + Mpidr = GET_MPIDR_AFFINITY_BITS (ArmReadMpidr ());
>> +
>> + Index = 0;
>> + ProcessorIndex = MAX_UINT64;
>> +
>> + do {
>> + if (gProcessorIDs[Index] == Mpidr) {
>> + ProcessorIndex = Index;
>> + break;
>> + }
>> +
>> + Index++;
>> + } while (gProcessorIDs[Index] != MAX_UINT64);
>> +
>> + if (ProcessorIndex != MAX_UINT64) {
>> + mCpuMpData.CpuData[ProcessorIndex].State = CpuStateFinished;
>> + ArmDataMemoryBarrier ();
>> + }
>> +
>> + Args.Arg0 = ARM_SMC_ID_PSCI_CPU_OFF;
>> + ArmCallSmc (&Args);
>> +
>> + /* Should never be reached */
>> + ASSERT (FALSE);
>> + CpuDeadLoop ();
>> +}
>> +
>> +/** C entry-point for the AP.
>> + This function gets called from the assembly function ApEntryPoint.
>> +
>> +**/
>> +VOID
>> +ApProcedure (
>> + VOID
>> + )
>> +{
>> + ARM_SMC_ARGS Args;
>> + EFI_AP_PROCEDURE UserApProcedure;
>> + VOID *UserApParameter;
>> + UINTN ProcessorIndex;
>> +
>> + ProcessorIndex = 0;
>> +
>> + WhoAmI (&mMpServicesProtocol, &ProcessorIndex);
>> +
>> + /* Fetch the user-supplied procedure and parameter to execute */
>> + UserApProcedure = mCpuMpData.CpuData[ProcessorIndex].Procedure;
>> + UserApParameter = mCpuMpData.CpuData[ProcessorIndex].Parameter;
>> +
>> + // Configure the MMU and caches
>> + ArmSetTCR (mCpuMpData.CpuData[ProcessorIndex].Tcr);
>> + ArmSetTTBR0 (mCpuMpData.CpuData[ProcessorIndex].Ttbr0);
>> + ArmSetMAIR (mCpuMpData.CpuData[ProcessorIndex].Mair);
>> + ArmDisableAlignmentCheck ();
>> + ArmEnableStackAlignmentCheck ();
>> + ArmEnableInstructionCache ();
>> + ArmEnableDataCache ();
>> + ArmEnableMmu ();
>> +
>> + InitializeCpuExceptionHandlers (NULL);
>> + RegisterCpuInterruptHandler
>> (EXCEPT_AARCH64_SYNCHRONOUS_EXCEPTIONS, ApExceptionHandler);
>> + RegisterCpuInterruptHandler (EXCEPT_AARCH64_IRQ, ApExceptionHandler);
>> + RegisterCpuInterruptHandler (EXCEPT_AARCH64_FIQ, ApExceptionHandler);
>> + RegisterCpuInterruptHandler (EXCEPT_AARCH64_SERROR,
>> ApExceptionHandler);
>> +
>> + UserApProcedure (UserApParameter);
>> +
>> + mCpuMpData.CpuData[ProcessorIndex].State = CpuStateFinished;
>> +
>> + ArmDataMemoryBarrier ();
>> +
>> + /* Since we're finished with this AP, turn it off */
>> + Args.Arg0 = ARM_SMC_ID_PSCI_CPU_OFF;
>> + ArmCallSmc (&Args);
>> +
>> + /* Should never be reached */
>> + ASSERT (FALSE);
>> + CpuDeadLoop ();
>> +}
>> +
>> +/** Returns whether the processor executing this function is the BSP.
>> +
>> + @return Whether the current processor is the BSP.
>> +**/
>> +STATIC
>> +BOOLEAN
>> +IsCurrentProcessorBSP (
>> + VOID
>> + )
>> +{
>> + EFI_STATUS Status;
>> + UINTN ProcessorIndex;
>> +
>> + Status = WhoAmI (&mMpServicesProtocol, &ProcessorIndex);
>> + if (EFI_ERROR (Status)) {
>> + ASSERT_EFI_ERROR (Status);
>> + return FALSE;
>> + }
>> +
>> + return IsProcessorBSP (ProcessorIndex);
>> +}
>> +
>> +/** Returns whether the specified processor is enabled.
>> +
>> + @param[in] ProcessorIndex The index of the processor to check.
>> +
>> + @return TRUE if the processor is enabled, FALSE otherwise.
>> +**/
>> +STATIC
>> +BOOLEAN
>> +IsProcessorEnabled (
>> + UINTN ProcessorIndex
>> + )
>> +{
>> + EFI_PROCESSOR_INFORMATION *CpuInfo;
>> +
>> + CpuInfo = &mCpuMpData.CpuData[ProcessorIndex].Info;
>> +
>> + return (CpuInfo->StatusFlag & PROCESSOR_ENABLED_BIT) != 0;
>> +}
>> +
>> +/** Sets up the state for the StartupAllAPs function.
>> +
>> + @param SingleThread Whether the APs will execute sequentially.
>> +
>> +**/
>> +STATIC
>> +VOID
>> +StartupAllAPsPrepareState (
>> + IN BOOLEAN SingleThread
>> + )
>> +{
>> + UINTN Index;
>> + CPU_STATE APInitialState;
>> + CPU_AP_DATA *CpuData;
>> +
>> + mCpuMpData.FinishCount = 0;
>> + mCpuMpData.StartCount = 0;
>> + mCpuMpData.SingleThread = SingleThread;
>> +
>> + APInitialState = CpuStateReady;
>> +
>> + for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
>> + CpuData = &mCpuMpData.CpuData[Index];
>> +
>> + //
>> + // Get APs prepared, and put failing APs into FailedCpuList.
>> + // If "SingleThread", only 1 AP will put into ready state, other
>> AP will be
>> + // put into ready state 1 by 1, until the previous 1 finished
>> its task.
>> + // If not "SingleThread", all APs are put into ready state from the
>> + // beginning
>> + //
>> +
>> + if (IsProcessorBSP (Index)) {
>> + // Skip BSP
>> + continue;
>> + }
>> +
>> + if (!IsProcessorEnabled (Index)) {
>> + // Skip Disabled processors
>> + if (mCpuMpData.FailedList != NULL) {
>> + mCpuMpData.FailedList[mCpuMpData.FailedListIndex++] = Index;
>> + }
>> +
>> + continue;
>> + }
>> +
>> + CpuData->State = APInitialState;
>> +
>> + mCpuMpData.StartCount++;
>> + if (SingleThread) {
>> + APInitialState = CpuStateBlocked;
>> + }
>> + }
>> +}
>> +
>> +/** Handles execution of StartupAllAPs when a WaitEvent has been
>> specified.
>> +
>> + @param Procedure The user-supplied procedure.
>> + @param ProcedureArgument The user-supplied procedure argument.
>> + @param WaitEvent The wait event to be signaled when the
>> work is
>> + complete or a timeout has occurred.
>> + @param TimeoutInMicroseconds The timeout for the work to be
>> completed. Zero
>> + indicates an infinite timeout.
>> + @param SingleThread Whether the APs will execute
>> sequentially.
>> + @param FailedCpuList User-supplied pointer for list of
>> failed CPUs.
>> +
>> + @return EFI_SUCCESS on success.
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +StartupAllAPsWithWaitEvent (
>> + IN EFI_AP_PROCEDURE Procedure,
>> + IN VOID *ProcedureArgument,
>> + IN EFI_EVENT WaitEvent,
>> + IN UINTN TimeoutInMicroseconds,
>> + IN BOOLEAN SingleThread,
>> + IN UINTN **FailedCpuList
>> + )
>> +{
>> + EFI_STATUS Status;
>> + UINTN Index;
>> + CPU_AP_DATA *CpuData;
>> +
>> + for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
>> + CpuData = &mCpuMpData.CpuData[Index];
>> + if (IsProcessorBSP (Index)) {
>> + // Skip BSP
>> + continue;
>> + }
>> +
>> + if (!IsProcessorEnabled (Index)) {
>> + // Skip Disabled processors
>> + continue;
>> + }
>> +
>> + if (GetApState (CpuData) == CpuStateReady) {
>> + SetApProcedure (CpuData, Procedure, ProcedureArgument);
>> + if ((mCpuMpData.StartCount == 0) || !SingleThread) {
>> + Status = DispatchCpu (Index);
>> + if (EFI_ERROR (Status)) {
>> + AddProcessorToFailedList (Index, CpuData->State);
>> + break;
>> + }
>> + }
>> + }
>> + }
>> +
>> + if (EFI_ERROR (Status)) {
>> + return EFI_NOT_READY;
>> + }
>> +
>> + //
>> + // Save data into private data structure, and create timer to poll
>> AP state
>> + // before exiting
>> + //
>> + mCpuMpData.Procedure = Procedure;
>> + mCpuMpData.ProcedureArgument = ProcedureArgument;
>> + mCpuMpData.WaitEvent = WaitEvent;
>> + mCpuMpData.Timeout = TimeoutInMicroseconds;
>> + mCpuMpData.TimeTaken = 0;
>> + mCpuMpData.TimeoutActive = (BOOLEAN)(TimeoutInMicroseconds != 0);
>> + Status = gBS->SetTimer (
>> + mCpuMpData.CheckAllAPsEvent,
>> + TimerPeriodic,
>> + POLL_INTERVAL_US
>> + );
>> +
>> + return Status;
>> +}
>> +
>> +/** Handles execution of StartupAllAPs when no wait event has been
>> specified.
>> +
>> + @param Procedure The user-supplied procedure.
>> + @param ProcedureArgument The user-supplied procedure argument.
>> + @param TimeoutInMicroseconds The timeout for the work to be
>> completed. Zero
>> + indicates an infinite timeout.
>> + @param SingleThread Whether the APs will execute
>> sequentially.
>> + @param FailedCpuList User-supplied pointer for list of
>> failed CPUs.
>> +
>> + @return EFI_SUCCESS on success.
>> +**/
>> +STATIC
>> +EFI_STATUS
>> +StartupAllAPsNoWaitEvent (
>> + IN EFI_AP_PROCEDURE Procedure,
>> + IN VOID *ProcedureArgument,
>> + IN UINTN TimeoutInMicroseconds,
>> + IN BOOLEAN SingleThread,
>> + IN UINTN **FailedCpuList
>> + )
>> +{
>> + EFI_STATUS Status;
>> + UINTN Index;
>> + UINTN NextIndex;
>> + UINTN Timeout;
>> + CPU_AP_DATA *CpuData;
>> + BOOLEAN DispatchError;
>> +
>> + Timeout = TimeoutInMicroseconds;
>> + DispatchError = FALSE;
>> +
>> + while (TRUE) {
>> + for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
>> + CpuData = &mCpuMpData.CpuData[Index];
>> + if (IsProcessorBSP (Index)) {
>> + // Skip BSP
>> + continue;
>> + }
>> +
>> + if (!IsProcessorEnabled (Index)) {
>> + // Skip Disabled processors
>> + continue;
>> + }
>> +
>> + switch (GetApState (CpuData)) {
>> + case CpuStateReady:
>> + SetApProcedure (CpuData, Procedure, ProcedureArgument);
>> + Status = DispatchCpu (Index);
>> + if (EFI_ERROR (Status)) {
>> + AddProcessorToFailedList (Index, CpuData->State);
>> + CpuData->State = CpuStateIdle;
>> + mCpuMpData.StartCount--;
>> + DispatchError = TRUE;
>> +
>> + if (SingleThread) {
>> + // Dispatch the next available AP
>> + Status = GetNextBlockedNumber (&NextIndex);
>> + if (!EFI_ERROR (Status)) {
>> + mCpuMpData.CpuData[NextIndex].State = CpuStateReady;
>> + }
>> + }
>> + }
>> +
>> + break;
>> +
>> + case CpuStateFinished:
>> + mCpuMpData.FinishCount++;
>> + if (SingleThread) {
>> + Status = GetNextBlockedNumber (&NextIndex);
>> + if (!EFI_ERROR (Status)) {
>> + mCpuMpData.CpuData[NextIndex].State = CpuStateReady;
>> + }
>> + }
>> +
>> + CpuData->State = CpuStateIdle;
>> + break;
>> +
>> + default:
>> + break;
>> + }
>> + }
>> +
>> + if (mCpuMpData.FinishCount == mCpuMpData.StartCount) {
>> + Status = EFI_SUCCESS;
>> + break;
>> + }
>> +
>> + if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) {
>> + Status = EFI_TIMEOUT;
>> + break;
>> + }
>> +
>> + Timeout -= CalculateAndStallInterval (Timeout);
>> + }
>> +
>> + if (Status == EFI_TIMEOUT) {
>> + // Add any remaining CPUs to the FailedCpuList
>> + if (FailedCpuList != NULL) {
>> + for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
>> + AddProcessorToFailedList (Index,
>> mCpuMpData.CpuData[Index].State);
>> + }
>> + }
>> + }
>> +
>> + if (DispatchError) {
>> + Status = EFI_NOT_READY;
>> + }
>> +
>> + return Status;
>> +}
>> diff --git a/ArmPkg/Drivers/ArmPsciMpServicesDxe/MpFuncs.S
>> b/ArmPkg/Drivers/ArmPsciMpServicesDxe/MpFuncs.S
>> new file mode 100644
>> index 000000000000..a90fa8a0075f
>> --- /dev/null
>> +++ b/ArmPkg/Drivers/ArmPsciMpServicesDxe/MpFuncs.S
>> @@ -0,0 +1,57 @@
>> +#===============================================================================
>>
>> +# Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights
>> reserved.
>> +#
>> +# SPDX-License-Identifier: BSD-2-Clause-Patent
>> +#===============================================================================
>>
>> +
>> +.text
>> +.align 3
>> +
>> +#include <AsmMacroIoLibV8.h>
>> +#include <IndustryStandard/ArmStdSmc.h>
>> +
>> +#include "MpServicesInternal.h"
>> +
>> +GCC_ASM_IMPORT (gApStacksBase)
>> +GCC_ASM_IMPORT (gProcessorIDs)
>> +GCC_ASM_IMPORT (ApProcedure)
>> +GCC_ASM_IMPORT (gApStackSize)
>> +
>> +GCC_ASM_EXPORT (ApEntryPoint)
>> +
>> +// Entry-point for the AP
>> +// VOID
>> +// ApEntryPoint (
>> +// VOID
>> +// );
>> +ASM_PFX(ApEntryPoint):
>> + mrs x0, mpidr_el1
>> + // Mask the non-affinity bits
>> + bic x0, x0, 0x00ff000000
>> + and x0, x0, 0xffffffffff
>> + ldr x1, gProcessorIDs
>> + mov x2, 0 // x2 = processor index
>> +
>> +// Find index in gProcessorIDs for current processor
>> +1:
>> + ldr x3, [x1, x2, lsl #3] // x4 = gProcessorIDs + x2 * 8
>> + cmp x3, #-1 // check if we've reached the end of
>> gProcessorIDs
>> + beq ProcessorNotFound
>> + add x2, x2, 1 // x2++
>> + cmp x0, x3 // if mpidr_el1 != gProcessorIDs[x]
>> then loop
>> + bne 1b
>> +
>> +// Calculate stack address
>> + // x2 contains the index for the current processor plus 1
>> + ldr x0, gApStacksBase
>> + ldr x1, gApStackSize
>> + mul x3, x2, x1 // x3 = (ProcessorIndex + 1) *
>> gApStackSize
>> + add sp, x0, x3 // sp = gApStacksBase + x3
>> + mov x29, xzr
>> + bl ApProcedure // doesn't return
>> +
>> +ProcessorNotFound:
>> +// Turn off the processor
>> + MOV32 (w0, ARM_SMC_ID_PSCI_CPU_OFF)
>> + smc #0
>> + b .
>
>
>
>
>
next prev parent reply other threads:[~2023-01-06 22:16 UTC|newest]
Thread overview: 29+ messages / expand[flat|nested] mbox.gz Atom feed top
2023-01-04 15:37 [PATCH v4 0/3] ArmPkg,MdeModulePkg: Implement EFI_MP_SERVICES_PROTOCOL for AArch64 and add an MpServicesTest application to exercise it Rebecca Cran
2023-01-04 15:37 ` [PATCH v4 1/3] ArmPkg: Add GET_MPIDR_AFFINITY_BITS and MPIDR_MT_BIT to ArmLib.h Rebecca Cran
2023-01-04 15:37 ` [PATCH v4 2/3] ArmPkg: implement EFI_MP_SERVICES_PROTOCOL based on PSCI calls Rebecca Cran
2023-01-06 22:11 ` [edk2-devel] " Kun Qin
2023-01-16 18:41 ` Rebecca Cran
[not found] ` <1737D7D0377487BE.3916@groups.io>
2023-01-06 22:16 ` Kun Qin [this message]
2023-01-13 2:01 ` Kun Qin
2023-01-16 19:06 ` Rebecca Cran
2023-01-16 18:45 ` Rebecca Cran
2023-01-04 15:37 ` [PATCH v4 3/3] MdeModulePkg: Add new Application/MpServicesTest application Rebecca Cran
2023-01-06 9:40 ` Ard Biesheuvel
2023-01-06 11:02 ` [edk2-devel] " Laszlo Ersek
2023-01-06 18:40 ` Rebecca Cran
2023-01-06 22:33 ` Kun Qin
2023-01-08 4:56 ` Rebecca Cran
2023-01-09 1:32 ` Ni, Ray
2023-01-09 14:25 ` Rebecca Cran
2023-01-09 17:12 ` Ard Biesheuvel
2023-01-10 1:08 ` Ni, Ray
2023-01-15 1:02 ` Rebecca Cran
2023-01-07 22:19 ` Laszlo Ersek
2023-01-05 17:39 ` [PATCH v4 0/3] ArmPkg,MdeModulePkg: Implement EFI_MP_SERVICES_PROTOCOL for AArch64 and add an MpServicesTest application to exercise it Ard Biesheuvel
2023-01-05 17:59 ` Ard Biesheuvel
2023-01-06 5:11 ` [edk2-devel] " Kun Qin
2023-01-06 18:42 ` Rebecca Cran
2023-01-06 19:56 ` Kun Qin
2023-01-08 3:55 ` Rebecca Cran
2023-01-11 16:41 ` [edk2-devel] " Patrik Berglund
2023-01-11 22:54 ` Rebecca Cran
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-list from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=1497c8b2-18f4-45ca-f30d-b06a33cd83ea@gmail.com \
--to=devel@edk2.groups.io \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox