public inbox for devel@edk2.groups.io
 help / color / mirror / Atom feed
From: "Chao Li" <lichao@loongson.cn>
To: devel@edk2.groups.io
Cc: Eric Dong <eric.dong@intel.com>, Ray Ni <ray.ni@intel.com>,
	Rahul Kumar <rahul1.kumar@intel.com>,
	Gerd Hoffmann <kraxel@redhat.com>,
	Baoqi Zhang <zhangbaoqi@loongson.cn>,
	Dongyan Qian <qiandongyan@loongson.cn>
Subject: [edk2-devel] [PATCH v5 15/36] UefiCpuPkg: Add CpuDxe driver for LoongArch64
Date: Thu, 28 Dec 2023 18:06:15 +0800	[thread overview]
Message-ID: <20231228100615.1765554-1-lichao@loongson.cn> (raw)
In-Reply-To: <20231228100351.1756165-1-lichao@loongson.cn>

Added a new DXE driver named CpuDxeLoongArch64.

BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=4584

Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Chao Li <lichao@loongson.cn>
Co-authored-by: Baoqi Zhang <zhangbaoqi@loongson.cn>
Co-authored-by: Dongyan Qian <qiandongyan@loongson.cn>
Acked-by: Ray Ni <ray.ni@intel.com>
---
 UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.c    | 437 ++++++++++++++++++
 UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.h    | 288 ++++++++++++
 UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.inf  |  60 +++
 UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.uni  |  15 +
 UefiCpuPkg/CpuDxeLoongArch64/CpuMp.c     | 544 +++++++++++++++++++++++
 UefiCpuPkg/CpuDxeLoongArch64/CpuMp.h     | 471 ++++++++++++++++++++
 UefiCpuPkg/CpuDxeLoongArch64/Exception.c | 150 +++++++
 UefiCpuPkg/UefiCpuPkg.dsc                |   1 +
 8 files changed, 1966 insertions(+)
 create mode 100644 UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.c
 create mode 100644 UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.h
 create mode 100644 UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.inf
 create mode 100644 UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.uni
 create mode 100644 UefiCpuPkg/CpuDxeLoongArch64/CpuMp.c
 create mode 100644 UefiCpuPkg/CpuDxeLoongArch64/CpuMp.h
 create mode 100644 UefiCpuPkg/CpuDxeLoongArch64/Exception.c

diff --git a/UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.c b/UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.c
new file mode 100644
index 0000000000..58a198e3a4
--- /dev/null
+++ b/UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.c
@@ -0,0 +1,437 @@
+/** @file CpuDxe.c
+
+  CPU DXE Module to produce CPU ARCH Protocol.
+
+  Copyright (c) 2024, Loongson Technology Corporation Limited. All rights reserved.<BR>
+
+  SPDX-License-Identifier: BSD-2-Clause-Patent
+**/
+
+#include "CpuDxe.h"
+#include "CpuMp.h"
+#include <Guid/IdleLoopEvent.h>
+#include <Library/CpuMmuLib.h>
+#include <Register/LoongArch64/Csr.h>
+
+//
+// Globals used to initialize the protocol
+//
+EFI_HANDLE             mCpuHandle = NULL;
+EFI_CPU_ARCH_PROTOCOL  gCpu       = {
+  CpuFlushCpuDataCache,
+  CpuEnableInterrupt,
+  CpuDisableInterrupt,
+  CpuGetInterruptState,
+  CpuInit,
+  CpuRegisterInterruptHandler,
+  CpuGetTimerValue,
+  CpuSetMemoryAttributes,
+  0,          // NumberOfTimers
+  4,          // DmaBufferAlignment
+};
+
+/**
+  This function flushes the range of addresses from Start to Start+Length
+  from the processor's data cache. If Start is not aligned to a cache line
+  boundary, then the bytes before Start to the preceding cache line boundary
+  are also flushed. If Start+Length is not aligned to a cache line boundary,
+  then the bytes past Start+Length to the end of the next cache line boundary
+  are also flushed. The FlushType of EfiCpuFlushTypeWriteBackInvalidate must be
+  supported. If the data cache is fully coherent with all DMA operations, then
+  this function can just return EFI_SUCCESS. If the processor does not support
+  flushing a range of the data cache, then the entire data cache can be flushed.
+
+  @param  This             The EFI_CPU_ARCH_PROTOCOL instance.
+  @param  Start            The beginning physical address to flush from the processor's data
+                           cache.
+  @param  Length           The number of bytes to flush from the processor's data cache. This
+                           function may flush more bytes than Length specifies depending upon
+                           the granularity of the flush operation that the processor supports.
+  @param  FlushType        Specifies the type of flush operation to perform.
+
+  @retval EFI_SUCCESS           The address range from Start to Start+Length was flushed from
+                                the processor's data cache.
+  @retval EFI_INVALID_PARAMETER The processor does not support the cache flush type specified
+                                by FlushType.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuFlushCpuDataCache (
+  IN EFI_CPU_ARCH_PROTOCOL  *This,
+  IN EFI_PHYSICAL_ADDRESS   Start,
+  IN UINT64                 Length,
+  IN EFI_CPU_FLUSH_TYPE     FlushType
+  )
+{
+  switch (FlushType) {
+    case EfiCpuFlushTypeWriteBack:
+      WriteBackDataCacheRange ((VOID *)(UINTN)Start, (UINTN)Length);
+      break;
+    case EfiCpuFlushTypeInvalidate:
+      InvalidateDataCacheRange ((VOID *)(UINTN)Start, (UINTN)Length);
+      break;
+    case EfiCpuFlushTypeWriteBackInvalidate:
+      WriteBackInvalidateDataCacheRange ((VOID *)(UINTN)Start, (UINTN)Length);
+      break;
+    default:
+      return EFI_INVALID_PARAMETER;
+  }
+
+  return EFI_SUCCESS;
+}
+
+/**
+  This function enables interrupt processing by the processor.
+
+  @param  This             The EFI_CPU_ARCH_PROTOCOL instance.
+
+  @retval EFI_SUCCESS           Interrupts are enabled on the processor.
+  @retval EFI_DEVICE_ERROR      Interrupts could not be enabled on the processor.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuEnableInterrupt (
+  IN EFI_CPU_ARCH_PROTOCOL  *This
+  )
+{
+  EnableInterrupts ();
+
+  return EFI_SUCCESS;
+}
+
+/**
+  This function disables interrupt processing by the processor.
+
+  @param  This             The EFI_CPU_ARCH_PROTOCOL instance.
+
+  @retval EFI_SUCCESS           Interrupts are disabled on the processor.
+  @retval EFI_DEVICE_ERROR      Interrupts could not be disabled on the processor.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuDisableInterrupt (
+  IN EFI_CPU_ARCH_PROTOCOL  *This
+  )
+{
+  DisableInterrupts ();
+
+  return EFI_SUCCESS;
+}
+
+/**
+  This function retrieves the processor's current interrupt state a returns it in
+  State. If interrupts are currently enabled, then TRUE is returned. If interrupts
+  are currently disabled, then FALSE is returned.
+
+  @param  This             The EFI_CPU_ARCH_PROTOCOL instance.
+  @param  State            A pointer to the processor's current interrupt state. Set to TRUE if
+                           interrupts are enabled and FALSE if interrupts are disabled.
+
+  @retval EFI_SUCCESS           The processor's current interrupt state was returned in State.
+  @retval EFI_INVALID_PARAMETER State is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuGetInterruptState (
+  IN  EFI_CPU_ARCH_PROTOCOL  *This,
+  OUT BOOLEAN                *State
+  )
+{
+  if (State == NULL) {
+    return EFI_INVALID_PARAMETER;
+  }
+
+  *State = GetInterruptState ();
+  return EFI_SUCCESS;
+}
+
+/**
+  This function generates an INIT on the processor. If this function succeeds, then the
+  processor will be reset, and control will not be returned to the caller. If InitType is
+  not supported by this processor, or the processor cannot programmatically generate an
+  INIT without help from external hardware, then EFI_UNSUPPORTED is returned. If an error
+  occurs attempting to generate an INIT, then EFI_DEVICE_ERROR is returned.
+
+  @param  This             The EFI_CPU_ARCH_PROTOCOL instance.
+  @param  InitType         The type of processor INIT to perform.
+
+  @retval EFI_SUCCESS           The processor INIT was performed. This return code should never be seen.
+  @retval EFI_UNSUPPORTED       The processor INIT operation specified by InitType is not supported
+                                by this processor.
+  @retval EFI_DEVICE_ERROR      The processor INIT failed.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuInit (
+  IN EFI_CPU_ARCH_PROTOCOL  *This,
+  IN EFI_CPU_INIT_TYPE      InitType
+  )
+{
+  return EFI_UNSUPPORTED;
+}
+
+/**
+  Registers a function to be called from the CPU interrupt handler.
+
+  @param  This                   Protocol instance structure
+  @param  InterruptType          Defines which interrupt to hook. IA-32
+                                 valid range is 0x00 through 0xFF
+  @param  InterruptHandler       A pointer to a function of type
+                                 EFI_CPU_INTERRUPT_HANDLER that is called
+                                 when a processor interrupt occurs.  A null
+                                 pointer is an error condition.
+
+  @retval EFI_SUCCESS            If handler installed or uninstalled.
+  @retval EFI_ALREADY_STARTED    InterruptHandler is not NULL, and a handler
+                                 for InterruptType was previously installed.
+  @retval EFI_INVALID_PARAMETER  InterruptHandler is NULL, and a handler for
+                                 InterruptType was not previously installed.
+  @retval EFI_UNSUPPORTED        The interrupt specified by InterruptType
+                                 is not supported.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuRegisterInterruptHandler (
+  IN EFI_CPU_ARCH_PROTOCOL      *This,
+  IN EFI_EXCEPTION_TYPE         InterruptType,
+  IN EFI_CPU_INTERRUPT_HANDLER  InterruptHandler
+  )
+{
+  return RegisterInterruptHandler (InterruptType, InterruptHandler);
+}
+
+/**
+  Returns a timer value from one of the CPU's internal timers. There is no
+  inherent time interval between ticks but is a function of the CPU frequency.
+
+  @param  This                - Protocol instance structure.
+  @param  TimerIndex          - Specifies which CPU timer is requested.
+  @param  TimerValue          - Pointer to the returned timer value.
+  @param  TimerPeriod         - A pointer to the amount of time that passes
+                                in femtoseconds (10-15) for each increment
+                                of TimerValue. If TimerValue does not
+                                increment at a predictable rate, then 0 is
+                                returned.  The amount of time that has
+                                passed between two calls to GetTimerValue()
+                                can be calculated with the formula
+                                (TimerValue2 - TimerValue1) * TimerPeriod.
+                                This parameter is optional and may be NULL.
+
+  @retval EFI_SUCCESS           - If the CPU timer count was returned.
+  @retval EFI_UNSUPPORTED       - If the CPU does not have any readable timers.
+  @retval EFI_DEVICE_ERROR      - If an error occurred while reading the timer.
+  @retval EFI_INVALID_PARAMETER - TimerIndex is not valid or TimerValue is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuGetTimerValue (
+  IN  EFI_CPU_ARCH_PROTOCOL  *This,
+  IN  UINT32                 TimerIndex,
+  OUT UINT64                 *TimerValue,
+  OUT UINT64                 *TimerPeriod   OPTIONAL
+  )
+{
+  return EFI_UNSUPPORTED;
+}
+
+/**
+  This function modifies the attributes for the memory region specified by BaseAddress and
+  Length from their current attributes to the attributes specified by Attributes.
+
+  @param  This             The EFI_CPU_ARCH_PROTOCOL instance.
+  @param  BaseAddress      The physical address that is the start address of a memory region.
+  @param  Length           The size in bytes of the memory region.
+  @param  EfiAttributes    The bit mask of attributes to set for the memory region.
+
+  @retval EFI_SUCCESS           The attributes were set for the memory region.
+  @retval EFI_ACCESS_DENIED     The attributes for the memory resource range specified by
+                                BaseAddress and Length cannot be modified.
+  @retval EFI_INVALID_PARAMETER Length is zero.
+  @retval EFI_OUT_OF_RESOURCES  There are not enough system resources to modify the attributes of
+                                the memory resource range.
+  @retval EFI_UNSUPPORTED       The processor does not support one or more bytes of the memory
+                                resource range specified by BaseAddress and Length.
+                                The bit mask of attributes is not support for the memory resource
+                                range specified by BaseAddress and Length.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuSetMemoryAttributes (
+  IN EFI_CPU_ARCH_PROTOCOL  *This,
+  IN EFI_PHYSICAL_ADDRESS   BaseAddress,
+  IN UINT64                 Length,
+  IN UINT64                 EfiAttributes
+  )
+{
+  EFI_STATUS  Status;
+  UINTN       LoongArchAttributes;
+  UINTN       RegionBaseAddress;
+  UINTN       RegionLength;
+  UINTN       RegionLoongArchAttributes;
+
+  RegionLength = Length;
+  Status       = EFI_SUCCESS;
+
+  if ((BaseAddress & (EFI_PAGE_SIZE - 1)) != 0) {
+    //
+    // Minimum granularity is SIZE_4KB.
+    //
+    DEBUG ((
+      DEBUG_INFO,
+      "CpuSetMemoryAttributes(%lx, %lx, %lx): Minimum granularity is SIZE_4KB\n",
+      BaseAddress,
+      Length,
+      EfiAttributes
+      ));
+
+    Status = EFI_UNSUPPORTED;
+
+    return Status;
+  }
+
+  //
+  // Convert the 'Attribute' into LoongArch Attribute
+  //
+  LoongArchAttributes = EfiAttributeConverse (EfiAttributes);
+
+  //
+  // Get the region starting from 'BaseAddress' and its 'Attribute'
+  //
+  RegionBaseAddress = BaseAddress;
+  Status            = GetMemoryRegionAttributes (
+                        RegionBaseAddress,
+                        &RegionLength,
+                        &RegionLoongArchAttributes
+                        );
+
+  //
+  // Data & Instruction Caches are flushed when we set new memory attributes.
+  // So, we only set the attributes if the new region is different.
+  //
+  if ((Status == EFI_NOT_FOUND) || (RegionLoongArchAttributes != LoongArchAttributes) ||
+      ((BaseAddress + Length) > (RegionBaseAddress + RegionLength))) {
+    Status = SetMemoryRegionAttributes (BaseAddress, Length, EfiAttributes, 0x0);
+  }
+
+  ASSERT_EFI_ERROR (Status);
+
+  return Status;
+}
+
+/**
+  Callback function for idle events.
+
+  @param  Event                 Event whose notification function is being invoked.
+  @param  Context               The pointer to the notification function's context,
+                                which is implementation-dependent.
+
+**/
+VOID
+EFIAPI
+IdleLoopEventCallback (
+  IN EFI_EVENT  Event,
+  IN VOID       *Context
+  )
+{
+  CpuSleep ();
+}
+
+/**
+  IPI Interrupt Handler.
+
+  @param InterruptType    The type of interrupt that occurred
+  @param SystemContext    A pointer to the system context when the interrupt occurred
+**/
+VOID
+EFIAPI
+IpiInterruptHandler (
+  IN EFI_EXCEPTION_TYPE  InterruptType,
+  IN EFI_SYSTEM_CONTEXT  SystemContext
+  )
+{
+  UINT32  IpiStatus;
+
+  VOID  (*Procedure) (
+    VOID
+    );
+
+  IpiStatus = IoCsrRead32 (LOONGARCH_IOCSR_IPI_STATUS);
+
+  //
+  // Clear interrupt.
+  //
+  IoCsrWrite32 (LOONGARCH_IOCSR_IPI_CLEAR, IpiStatus);
+
+  MemoryFence ();
+
+  //
+  // If the IPI IRQ is SMP_BOOT_CPU, it means the BSP is waking up the APs from the kernel.
+  // So read out the boot vector and jump to it.
+  //
+  if (IpiStatus & SMP_BOOT_CPU) {
+    Procedure = (VOID *)IoCsrRead64 (LOONGARCH_IOCSR_MBUF0);
+    Procedure ();
+  }
+}
+
+/**
+  Initialize the state information for the CPU Architectural Protocol.
+
+  @param ImageHandle     Image handle this driver.
+  @param SystemTable     Pointer to the System Table.
+
+  @retval EFI_SUCCESS           Thread can be successfully created
+  @retval EFI_OUT_OF_RESOURCES  Cannot allocate protocol data structure
+  @retval EFI_DEVICE_ERROR      Cannot create the thread
+
+**/
+EFI_STATUS
+CpuDxeInitialize (
+  IN EFI_HANDLE        ImageHandle,
+  IN EFI_SYSTEM_TABLE  *SystemTable
+  )
+{
+  EFI_STATUS  Status;
+  EFI_EVENT   IdleLoopEvent;
+
+  InitializeExceptions (&gCpu);
+
+  Status = gBS->InstallMultipleProtocolInterfaces (
+                  &mCpuHandle,
+                  &gEfiCpuArchProtocolGuid,
+                  &gCpu,
+                  NULL
+                  );
+  ASSERT_EFI_ERROR (Status);
+
+  //
+  // Setup a callback for idle events
+  //
+  Status = gBS->CreateEventEx (
+                  EVT_NOTIFY_SIGNAL,
+                  TPL_NOTIFY,
+                  IdleLoopEventCallback,
+                  NULL,
+                  &gIdleLoopEventGuid,
+                  &IdleLoopEvent
+                  );
+  ASSERT_EFI_ERROR (Status);
+
+  Status = gCpu.RegisterInterruptHandler (
+                  &gCpu,
+                  EXCEPT_LOONGARCH_INT_IPI,
+                  IpiInterruptHandler
+                  );
+
+  InitializeMpSupport ();
+
+  return Status;
+}
diff --git a/UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.h b/UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.h
new file mode 100644
index 0000000000..8bfbfa3442
--- /dev/null
+++ b/UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.h
@@ -0,0 +1,288 @@
+/** @file CpuDxe.c
+
+  CPU DXE Module to produce CPU ARCH Protocol.
+
+  Copyright (c) 2024, Loongson Technology Corporation Limited. All rights reserved.<BR>
+
+  SPDX-License-Identifier: BSD-2-Clause-Patent
+**/
+
+#ifndef CPU_DXE_H_
+#define CPU_DXE_H_
+
+#include <Uefi.h>
+#include <Library/BaseMemoryLib.h>
+#include <Library/CacheMaintenanceLib.h>
+#include <Library/CpuLib.h>
+#include <Library/DebugLib.h>
+#include <Library/DxeServicesTableLib.h>
+#include <Library/MpInitLib.h>
+#include <Library/PcdLib.h>
+#include <Library/PeCoffGetEntryPointLib.h>
+#include <Library/UefiBootServicesTableLib.h>
+#include <Library/UefiLib.h>
+
+#include <Guid/DebugImageInfoTable.h>
+#include <Protocol/Cpu.h>
+#include <Protocol/DebugSupport.h>
+#include <Protocol/LoadedImage.h>
+
+//
+// For coding convenience, define the maximum valid
+// LoongArch exception.
+// Since UEFI V2.11, it will be present in DebugSupport.h.
+//
+#define MAX_LOONGARCH_EXCEPTION  64
+
+/*
+  This function flushes the range of addresses from Start to Start+Length
+  from the processor's data cache. If Start is not aligned to a cache line
+  boundary, then the bytes before Start to the preceding cache line boundary
+  are also flushed. If Start+Length is not aligned to a cache line boundary,
+  then the bytes past Start+Length to the end of the next cache line boundary
+  are also flushed. The FlushType of EfiCpuFlushTypeWriteBackInvalidate must be
+  supported. If the data cache is fully coherent with all DMA operations, then
+  this function can just return EFI_SUCCESS. If the processor does not support
+  flushing a range of the data cache, then the entire data cache can be flushed.
+
+  @param  This             The EFI_CPU_ARCH_PROTOCOL instance.
+  @param  Start            The beginning physical address to flush from the processor's data
+                           cache.
+  @param  Length           The number of bytes to flush from the processor's data cache. This
+                           function may flush more bytes than Length specifies depending upon
+                           the granularity of the flush operation that the processor supports.
+  @param  FlushType        Specifies the type of flush operation to perform.
+
+  @retval EFI_SUCCESS           The address range from Start to Start+Length was flushed from
+                                the processor's data cache.
+  @retval EFI_UNSUPPORTEDT      The processor does not support the cache flush type specified
+                                by FlushType.
+  @retval EFI_DEVICE_ERROR      The address range from Start to Start+Length could not be flushed
+                                from the processor's data cache.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuFlushCpuDataCache (
+  IN EFI_CPU_ARCH_PROTOCOL  *This,
+  IN EFI_PHYSICAL_ADDRESS   Start,
+  IN UINT64                 Length,
+  IN EFI_CPU_FLUSH_TYPE     FlushType
+  );
+
+/**
+  This function enables interrupt processing by the processor.
+
+  @param  This             The EFI_CPU_ARCH_PROTOCOL instance.
+
+  @retval EFI_SUCCESS           Interrupts are enabled on the processor.
+  @retval EFI_DEVICE_ERROR      Interrupts could not be enabled on the processor.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuEnableInterrupt (
+  IN EFI_CPU_ARCH_PROTOCOL  *This
+  );
+
+/**
+  This function disables interrupt processing by the processor.
+
+  @param  This             The EFI_CPU_ARCH_PROTOCOL instance.
+
+  @retval EFI_SUCCESS           Interrupts are disabled on the processor.
+  @retval EFI_DEVICE_ERROR      Interrupts could not be disabled on the processor.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuDisableInterrupt (
+  IN EFI_CPU_ARCH_PROTOCOL  *This
+  );
+
+/**
+  This function retrieves the processor's current interrupt state a returns it in
+  State. If interrupts are currently enabled, then TRUE is returned. If interrupts
+  are currently disabled, then FALSE is returned.
+
+  @param  This             The EFI_CPU_ARCH_PROTOCOL instance.
+  @param  State            A pointer to the processor's current interrupt state. Set to TRUE if
+                           interrupts are enabled and FALSE if interrupts are disabled.
+
+  @retval EFI_SUCCESS           The processor's current interrupt state was returned in State.
+  @retval EFI_INVALID_PARAMETER State is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuGetInterruptState (
+  IN  EFI_CPU_ARCH_PROTOCOL  *This,
+  OUT BOOLEAN                *State
+  );
+
+/**
+  This function generates an INIT on the processor. If this function succeeds, then the
+  processor will be reset, and control will not be returned to the caller. If InitType is
+  not supported by this processor, or the processor cannot programmatically generate an
+  INIT without help from external hardware, then EFI_UNSUPPORTED is returned. If an error
+  occurs attempting to generate an INIT, then EFI_DEVICE_ERROR is returned.
+
+  @param  This             The EFI_CPU_ARCH_PROTOCOL instance.
+  @param  InitType         The type of processor INIT to perform.
+
+  @retval EFI_SUCCESS           The processor INIT was performed. This return code should never be seen.
+  @retval EFI_UNSUPPORTED       The processor INIT operation specified by InitType is not supported
+                                by this processor.
+  @retval EFI_DEVICE_ERROR      The processor INIT failed.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuInit (
+  IN EFI_CPU_ARCH_PROTOCOL  *This,
+  IN EFI_CPU_INIT_TYPE      InitType
+  );
+
+/**
+  Registers a function to be called from the CPU interrupt handler.
+
+  @param  This                   Protocol instance structure
+  @param  InterruptType          Defines which interrupt to hook. IA-32
+                                 valid range is 0x00 through 0xFF
+  @param  InterruptHandler       A pointer to a function of type
+                                 EFI_CPU_INTERRUPT_HANDLER that is called
+                                 when a processor interrupt occurs.  A null
+                                 pointer is an error condition.
+
+  @retval EFI_SUCCESS            If handler installed or uninstalled.
+  @retval EFI_ALREADY_STARTED    InterruptHandler is not NULL, and a handler
+                                 for InterruptType was previously installed.
+  @retval EFI_INVALID_PARAMETER  InterruptHandler is NULL, and a handler for
+                                 InterruptType was not previously installed.
+  @retval EFI_UNSUPPORTED        The interrupt specified by InterruptType
+                                 is not supported.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuRegisterInterruptHandler (
+  IN EFI_CPU_ARCH_PROTOCOL      *This,
+  IN EFI_EXCEPTION_TYPE         InterruptType,
+  IN EFI_CPU_INTERRUPT_HANDLER  InterruptHandler
+  );
+
+/**
+  Returns a timer value from one of the CPU's internal timers. There is no
+  inherent time interval between ticks but is a function of the CPU frequency.
+
+  @param  This                - Protocol instance structure.
+  @param  TimerIndex          - Specifies which CPU timer is requested.
+  @param  TimerValue          - Pointer to the returned timer value.
+  @param  TimerPeriod         - A pointer to the amount of time that passes
+                                in femtoseconds (10-15) for each increment
+                                of TimerValue. If TimerValue does not
+                                increment at a predictable rate, then 0 is
+                                returned.  The amount of time that has
+                                passed between two calls to GetTimerValue()
+                                can be calculated with the formula
+                                (TimerValue2 - TimerValue1) * TimerPeriod.
+                                This parameter is optional and may be NULL.
+
+  @retval EFI_SUCCESS           - If the CPU timer count was returned.
+  @retval EFI_UNSUPPORTED       - If the CPU does not have any readable timers.
+  @retval EFI_DEVICE_ERROR      - If an error occurred while reading the timer.
+  @retval EFI_INVALID_PARAMETER - TimerIndex is not valid or TimerValue is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuGetTimerValue (
+  IN  EFI_CPU_ARCH_PROTOCOL  *This,
+  IN  UINT32                 TimerIndex,
+  OUT UINT64                 *TimerValue,
+  OUT UINT64                 *TimerPeriod   OPTIONAL
+  );
+
+/**
+  This function registers and enables the handler specified by InterruptHandler for a processor
+  interrupt or exception type specified by InterruptType. If InterruptHandler is NULL, then the
+  handler for the processor interrupt or exception type specified by InterruptType is uninstalled.
+  The installed handler is called once for each processor interrupt or exception.
+
+  @param  InterruptType    A pointer to the processor's current interrupt state. Set to TRUE if interrupts
+                           are enabled and FALSE if interrupts are disabled.
+  @param  InterruptHandler A pointer to a function of type EFI_CPU_INTERRUPT_HANDLER that is called
+                           when a processor interrupt occurs. If this parameter is NULL, then the handler
+                           will be uninstalled.
+
+  @retval EFI_SUCCESS           The handler for the processor interrupt was successfully installed or uninstalled.
+  @retval EFI_ALREADY_STARTED   InterruptHandler is not NULL, and a handler for InterruptType was
+                                previously installed.
+  @retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for InterruptType was not
+                                previously installed.
+  @retval EFI_UNSUPPORTED       The interrupt specified by InterruptType is not supported.
+
+**/
+EFI_STATUS
+RegisterInterruptHandler (
+  IN EFI_EXCEPTION_TYPE         InterruptType,
+  IN EFI_CPU_INTERRUPT_HANDLER  InterruptHandler
+  );
+
+/**
+  This function modifies the attributes for the memory region specified by BaseAddress and
+  Length from their current attributes to the attributes specified by Attributes.
+
+  @param  This             The EFI_CPU_ARCH_PROTOCOL instance.
+  @param  BaseAddress      The physical address that is the start address of a memory region.
+  @param  Length           The size in bytes of the memory region.
+  @param  Attributes       The bit mask of attributes to set for the memory region.
+
+  @retval EFI_SUCCESS           The attributes were set for the memory region.
+  @retval EFI_ACCESS_DENIED     The attributes for the memory resource range specified by
+                                BaseAddress and Length cannot be modified.
+  @retval EFI_INVALID_PARAMETER Length is zero.
+  @retval EFI_OUT_OF_RESOURCES  There are not enough system resources to modify the attributes of
+                                the memory resource range.
+  @retval EFI_UNSUPPORTED       The processor does not support one or more bytes of the memory
+                                resource range specified by BaseAddress and Length.
+                                The bit mask of attributes is not support for the memory resource
+                                range specified by BaseAddress and Length.
+
+**/
+EFI_STATUS
+EFIAPI
+CpuSetMemoryAttributes (
+  IN EFI_CPU_ARCH_PROTOCOL  *This,
+  IN EFI_PHYSICAL_ADDRESS   BaseAddress,
+  IN UINT64                 Length,
+  IN UINT64                 Attributes
+  );
+
+/**
+  Initialize interrupt handling for DXE phase.
+
+  @param  Cpu A pointer of EFI_CPU_ARCH_PROTOCOL instance.
+
+  @return VOID.
+
+**/
+VOID
+InitializeExceptions (
+  IN EFI_CPU_ARCH_PROTOCOL  *gCpu
+  );
+
+/**
+  Converts EFI Attributes to corresponding architecture Attributes.
+
+  @param[in]  EfiAttributes     Efi Attributes.
+
+  @retval  Corresponding architecture attributes.
+**/
+UINTN
+EFIAPI
+EfiAttributeConverse (
+  IN UINTN  EfiAttributes
+  );
+
+#endif // CPU_DXE_H_
diff --git a/UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.inf b/UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.inf
new file mode 100644
index 0000000000..611a60b049
--- /dev/null
+++ b/UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.inf
@@ -0,0 +1,60 @@
+## @file
+#  CPU driver installs CPU Architecture Protocol and CPU MP protocol.
+#
+#  Copyright (c) 2024, Loongson Technology Corporation Limited. All rights reserved.<BR>
+#
+#  SPDX-License-Identifier: BSD-2-Clause-Patent
+#
+##
+
+[Defines]
+  INF_VERSION                    = 1.29
+  BASE_NAME                      = CpuDxe
+  MODULE_UNI_FILE                = CpuDxe.uni
+  FILE_GUID                      = BF954921-25C1-48C0-9BFB-8D0CD7EE92DA
+  MODULE_TYPE                    = DXE_DRIVER
+  VERSION_STRING                 = 1.0
+
+  ENTRY_POINT                    = CpuDxeInitialize
+
+[Sources]
+  CpuDxe.c
+  CpuMp.c
+  Exception.c
+  CpuDxe.h
+  CpuMp.h
+
+[Packages]
+  MdePkg/MdePkg.dec
+  MdeModulePkg/MdeModulePkg.dec
+  UefiCpuPkg/UefiCpuPkg.dec
+
+[LibraryClasses]
+  BaseLib
+  BaseMemoryLib
+  CacheMaintenanceLib
+  CpuExceptionHandlerLib
+  CpuLib
+  CpuMmuLib
+  DebugLib
+  DxeServicesTableLib
+  HobLib
+  MpInitLib
+  PeCoffGetEntryPointLib
+  UefiDriverEntryPoint
+  UefiLib
+
+[Protocols]
+  gEfiCpuArchProtocolGuid
+  gEfiMpServiceProtocolGuid
+
+[Guids]
+  gEfiDebugImageInfoTableGuid
+  gIdleLoopEventGuid
+  gEfiVectorHandoffTableGuid
+
+[Pcd]
+  gUefiCpuPkgTokenSpaceGuid.PcdCpuExceptionVectorBaseAddress
+
+[Depex]
+ TRUE
diff --git a/UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.uni b/UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.uni
new file mode 100644
index 0000000000..5e0d8a1d0d
--- /dev/null
+++ b/UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.uni
@@ -0,0 +1,15 @@
+// /** @file
+// CPU driver installs CPU Architecture Protocol and CPU MP Protocol.
+//
+// CPU driver installs CPU Architecture Protocol and CPU MP Protocol.
+//
+// Copyright (c) 2024, Loongson Technology Corporation Limited. All rights reserved.<BR>
+//
+// SPDX-License-Identifier: BSD-2-Clause-Patent
+//
+// **/
+
+
+#string STR_MODULE_ABSTRACT             #language en-US "CPU driver installs CPU Architecture Protocol and CPU MP Protocol."
+
+#string STR_MODULE_DESCRIPTION          #language en-US "CPU driver installs CPU Architecture Protocol and CPU MP Protocol."
diff --git a/UefiCpuPkg/CpuDxeLoongArch64/CpuMp.c b/UefiCpuPkg/CpuDxeLoongArch64/CpuMp.c
new file mode 100644
index 0000000000..3325914e53
--- /dev/null
+++ b/UefiCpuPkg/CpuDxeLoongArch64/CpuMp.c
@@ -0,0 +1,544 @@
+/** @file
+  CPU DXE Module to produce CPU MP Protocol.
+
+  Copyright (c) 2024, Loongson Technology Corporation Limited. All rights reserved.<BR>
+
+  SPDX-License-Identifier: BSD-2-Clause-Patent
+**/
+
+#include "CpuDxe.h"
+#include "CpuMp.h"
+
+EFI_HANDLE  mMpServiceHandle    = NULL;
+UINTN       mNumberOfProcessors = 1;
+
+EFI_MP_SERVICES_PROTOCOL  mMpServicesTemplate = {
+  GetNumberOfProcessors,
+  GetProcessorInfo,
+  StartupAllAPs,
+  StartupThisAP,
+  SwitchBSP,
+  EnableDisableAP,
+  WhoAmI
+};
+
+/**
+  This service retrieves the number of logical processor in the platform
+  and the number of those logical processors that are enabled on this boot.
+  This service may only be called from the BSP.
+
+  This function is used to retrieve the following information:
+    - The number of logical processors that are present in the system.
+    - The number of enabled logical processors in the system at the instant
+      this call is made.
+
+  Because MP Service Protocol provides services to enable and disable processors
+  dynamically, the number of enabled logical processors may vary during the
+  course of a boot session.
+
+  If this service is called from an AP, then EFI_DEVICE_ERROR is returned.
+  If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
+  EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors
+  is returned in NumberOfProcessors, the number of currently enabled processor
+  is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned.
+
+  @param[in]  This                        A pointer to the EFI_MP_SERVICES_PROTOCOL
+                                          instance.
+  @param[out] NumberOfProcessors          Pointer to the total number of logical
+                                          processors in the system, including the BSP
+                                          and disabled APs.
+  @param[out] NumberOfEnabledProcessors   Pointer to the number of enabled logical
+                                          processors that exist in system, including
+                                          the BSP.
+
+  @retval EFI_SUCCESS             The number of logical processors and enabled
+                                  logical processors was retrieved.
+  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
+  @retval EFI_INVALID_PARAMETER   NumberOfProcessors is NULL.
+  @retval EFI_INVALID_PARAMETER   NumberOfEnabledProcessors is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+GetNumberOfProcessors (
+  IN  EFI_MP_SERVICES_PROTOCOL  *This,
+  OUT UINTN                     *NumberOfProcessors,
+  OUT UINTN                     *NumberOfEnabledProcessors
+  )
+{
+  if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors == NULL)) {
+    return EFI_INVALID_PARAMETER;
+  }
+
+  return MpInitLibGetNumberOfProcessors (
+           NumberOfProcessors,
+           NumberOfEnabledProcessors
+           );
+}
+
+/**
+  Gets detailed MP-related information on the requested processor at the
+  instant this call is made. This service may only be called from the BSP.
+
+  This service retrieves detailed MP-related information about any processor
+  on the platform. Note the following:
+    - The processor information may change during the course of a boot session.
+    - The information presented here is entirely MP related.
+
+  Information regarding the number of caches and their sizes, frequency of operation,
+  slot numbers is all considered platform-related information and is not provided
+  by this service.
+
+  @param[in]  This                  A pointer to the EFI_MP_SERVICES_PROTOCOL
+                                    instance.
+  @param[in]  ProcessorNumber       The handle number of processor.
+  @param[out] ProcessorInfoBuffer   A pointer to the buffer where information for
+                                    the requested processor is deposited.
+
+  @retval EFI_SUCCESS             Processor information was returned.
+  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
+  @retval EFI_INVALID_PARAMETER   ProcessorInfoBuffer is NULL.
+  @retval EFI_NOT_FOUND           The processor with the handle specified by
+                                  ProcessorNumber does not exist in the platform.
+
+**/
+EFI_STATUS
+EFIAPI
+GetProcessorInfo (
+  IN  EFI_MP_SERVICES_PROTOCOL   *This,
+  IN  UINTN                      ProcessorNumber,
+  OUT EFI_PROCESSOR_INFORMATION  *ProcessorInfoBuffer
+  )
+{
+  return MpInitLibGetProcessorInfo (ProcessorNumber, ProcessorInfoBuffer, NULL);
+}
+
+/**
+  This service executes a caller provided function on all enabled APs. APs can
+  run either simultaneously or one at a time in sequence. This service supports
+  both blocking and non-blocking requests. The non-blocking requests use EFI
+  events so the BSP can detect when the APs have finished. This service may only
+  be called from the BSP.
+
+  This function is used to dispatch all the enabled APs to the function specified
+  by Procedure.  If any enabled AP is busy, then EFI_NOT_READY is returned
+  immediately and Procedure is not started on any AP.
+
+  If SingleThread is TRUE, all the enabled APs execute the function specified by
+  Procedure one by one, in ascending order of processor handle number. Otherwise,
+  all the enabled APs execute the function specified by Procedure simultaneously.
+
+  If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all
+  APs finish or TimeoutInMicroseconds expires. Otherwise, execution is in non-blocking
+  mode, and the BSP returns from this service without waiting for APs. If a
+  non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
+  is signaled, then EFI_UNSUPPORTED must be returned.
+
+  If the timeout specified by TimeoutInMicroseconds expires before all APs return
+  from Procedure, then Procedure on the failed APs is terminated. All enabled APs
+  are always available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
+  and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its
+  content points to the list of processor handle numbers in which Procedure was
+  terminated.
+
+  Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
+  to make sure that the nature of the code that is executed on the BSP and the
+  dispatched APs is well controlled. The MP Services Protocol does not guarantee
+  that the Procedure function is MP-safe. Hence, the tasks that can be run in
+  parallel are limited to certain independent tasks and well-controlled exclusive
+  code. EFI services and protocols may not be called by APs unless otherwise
+  specified.
+
+  In blocking execution mode, BSP waits until all APs finish or
+  TimeoutInMicroseconds expires.
+
+  In non-blocking execution mode, BSP is freed to return to the caller and then
+  proceed to the next task without having to wait for APs. The following
+  sequence needs to occur in a non-blocking execution mode:
+
+    -# The caller that intends to use this MP Services Protocol in non-blocking
+       mode creates WaitEvent by calling the EFI CreateEvent() service.  The caller
+       invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter WaitEvent
+       is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests
+       the function specified by Procedure to be started on all the enabled APs,
+       and releases the BSP to continue with other tasks.
+    -# The caller can use the CheckEvent() and WaitForEvent() services to check
+       the state of the WaitEvent created in step 1.
+    -# When the APs complete their task or TimeoutInMicroSecondss expires, the MP
+       Service signals WaitEvent by calling the EFI SignalEvent() function. If
+       FailedCpuList is not NULL, its content is available when WaitEvent is
+       signaled. If all APs returned from Procedure prior to the timeout, then
+       FailedCpuList is set to NULL. If not all APs return from Procedure before
+       the timeout, then FailedCpuList is filled in with the list of the failed
+       APs. The buffer is allocated by MP Service Protocol using AllocatePool().
+       It is the caller's responsibility to free the buffer with FreePool() service.
+    -# This invocation of SignalEvent() function informs the caller that invoked
+       EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed
+       the specified task or a timeout occurred. The contents of FailedCpuList
+       can be examined to determine which APs did not complete the specified task
+       prior to the timeout.
+
+  @param[in]  This                    A pointer to the EFI_MP_SERVICES_PROTOCOL
+                                      instance.
+  @param[in]  Procedure               A pointer to the function to be run on
+                                      enabled APs of the system. See type
+                                      EFI_AP_PROCEDURE.
+  @param[in]  SingleThread            If TRUE, then all the enabled APs execute
+                                      the function specified by Procedure one by
+                                      one, in ascending order of processor handle
+                                      number.  If FALSE, then all the enabled APs
+                                      execute the function specified by Procedure
+                                      simultaneously.
+  @param[in]  WaitEvent               The event created by the caller with CreateEvent()
+                                      service.  If it is NULL, then execute in
+                                      blocking mode. BSP waits until all APs finish
+                                      or TimeoutInMicroseconds expires.  If it's
+                                      not NULL, then execute in non-blocking mode.
+                                      BSP requests the function specified by
+                                      Procedure to be started on all the enabled
+                                      APs, and go on executing immediately. If
+                                      all return from Procedure, or TimeoutInMicroseconds
+                                      expires, this event is signaled. The BSP
+                                      can use the CheckEvent() or WaitForEvent()
+                                      services to check the state of event.  Type
+                                      EFI_EVENT is defined in CreateEvent() in
+                                      the Unified Extensible Firmware Interface
+                                      Specification.
+  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
+                                      APs to return from Procedure, either for
+                                      blocking or non-blocking mode. Zero means
+                                      infinity.  If the timeout expires before
+                                      all APs return from Procedure, then Procedure
+                                      on the failed APs is terminated. All enabled
+                                      APs are available for next function assigned
+                                      by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
+                                      or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
+                                      If the timeout expires in blocking mode,
+                                      BSP returns EFI_TIMEOUT.  If the timeout
+                                      expires in non-blocking mode, WaitEvent
+                                      is signaled with SignalEvent().
+  @param[in]  ProcedureArgument       The parameter passed into Procedure for
+                                      all APs.
+  @param[out] FailedCpuList           If NULL, this parameter is ignored. Otherwise,
+                                      if all APs finish successfully, then its
+                                      content is set to NULL. If not all APs
+                                      finish before timeout expires, then its
+                                      content is set to address of the buffer
+                                      holding handle numbers of the failed APs.
+                                      The buffer is allocated by MP Service Protocol,
+                                      and it's the caller's responsibility to
+                                      free the buffer with FreePool() service.
+                                      In blocking mode, it is ready for consumption
+                                      when the call returns. In non-blocking mode,
+                                      it is ready when WaitEvent is signaled.  The
+                                      list of failed CPU is terminated by
+                                      END_OF_CPU_LIST.
+
+  @retval EFI_SUCCESS             In blocking mode, all APs have finished before
+                                  the timeout expired.
+  @retval EFI_SUCCESS             In non-blocking mode, function has been dispatched
+                                  to all enabled APs.
+  @retval EFI_UNSUPPORTED         A non-blocking mode request was made after the
+                                  UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
+                                  signaled.
+  @retval EFI_DEVICE_ERROR        Caller processor is AP.
+  @retval EFI_NOT_STARTED         No enabled APs exist in the system.
+  @retval EFI_NOT_READY           Any enabled APs are busy.
+  @retval EFI_TIMEOUT             In blocking mode, the timeout expired before
+                                  all enabled APs have finished.
+  @retval EFI_INVALID_PARAMETER   Procedure is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+StartupAllAPs (
+  IN  EFI_MP_SERVICES_PROTOCOL  *This,
+  IN  EFI_AP_PROCEDURE          Procedure,
+  IN  BOOLEAN                   SingleThread,
+  IN  EFI_EVENT                 WaitEvent               OPTIONAL,
+  IN  UINTN                     TimeoutInMicroseconds,
+  IN  VOID                      *ProcedureArgument      OPTIONAL,
+  OUT UINTN                     **FailedCpuList         OPTIONAL
+  )
+{
+  return MpInitLibStartupAllAPs (
+           Procedure,
+           SingleThread,
+           WaitEvent,
+           TimeoutInMicroseconds,
+           ProcedureArgument,
+           FailedCpuList
+           );
+}
+
+/**
+  This service lets the caller get one enabled AP to execute a caller-provided
+  function. The caller can request the BSP to either wait for the completion
+  of the AP or just proceed with the next task by using the EFI event mechanism.
+  See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking
+  execution support.  This service may only be called from the BSP.
+
+  This function is used to dispatch one enabled AP to the function specified by
+  Procedure passing in the argument specified by ProcedureArgument.  If WaitEvent
+  is NULL, execution is in blocking mode. The BSP waits until the AP finishes or
+  TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode.
+  BSP proceeds to the next task without waiting for the AP. If a non-blocking mode
+  is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled,
+  then EFI_UNSUPPORTED must be returned.
+
+  If the timeout specified by TimeoutInMicroseconds expires before the AP returns
+  from Procedure, then execution of Procedure by the AP is terminated. The AP is
+  available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
+  EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
+
+  @param[in]  This                    A pointer to the EFI_MP_SERVICES_PROTOCOL
+                                      instance.
+  @param[in]  Procedure               A pointer to the function to be run on the
+                                      designated AP of the system. See type
+                                      EFI_AP_PROCEDURE.
+  @param[in]  ProcessorNumber         The handle number of the AP. The range is
+                                      from 0 to the total number of logical
+                                      processors minus 1. The total number of
+                                      logical processors can be retrieved by
+                                      EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
+  @param[in]  WaitEvent               The event created by the caller with CreateEvent()
+                                      service.  If it is NULL, then execute in
+                                      blocking mode. BSP waits until this AP finish
+                                      or TimeoutInMicroSeconds expires.  If it's
+                                      not NULL, then execute in non-blocking mode.
+                                      BSP requests the function specified by
+                                      Procedure to be started on this AP,
+                                      and go on executing immediately. If this AP
+                                      return from Procedure or TimeoutInMicroSeconds
+                                      expires, this event is signaled. The BSP
+                                      can use the CheckEvent() or WaitForEvent()
+                                      services to check the state of event.  Type
+                                      EFI_EVENT is defined in CreateEvent() in
+                                      the Unified Extensible Firmware Interface
+                                      Specification.
+  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
+                                      this AP to finish this Procedure, either for
+                                      blocking or non-blocking mode. Zero means
+                                      infinity.  If the timeout expires before
+                                      this AP returns from Procedure, then Procedure
+                                      on the AP is terminated. The
+                                      AP is available for next function assigned
+                                      by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
+                                      or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
+                                      If the timeout expires in blocking mode,
+                                      BSP returns EFI_TIMEOUT.  If the timeout
+                                      expires in non-blocking mode, WaitEvent
+                                      is signaled with SignalEvent().
+  @param[in]  ProcedureArgument       The parameter passed into Procedure on the
+                                      specified AP.
+  @param[out] Finished                If NULL, this parameter is ignored.  In
+                                      blocking mode, this parameter is ignored.
+                                      In non-blocking mode, if AP returns from
+                                      Procedure before the timeout expires, its
+                                      content is set to TRUE. Otherwise, the
+                                      value is set to FALSE. The caller can
+                                      determine if the AP returned from Procedure
+                                      by evaluating this value.
+
+  @retval EFI_SUCCESS             In blocking mode, specified AP finished before
+                                  the timeout expires.
+  @retval EFI_SUCCESS             In non-blocking mode, the function has been
+                                  dispatched to specified AP.
+  @retval EFI_UNSUPPORTED         A non-blocking mode request was made after the
+                                  UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
+                                  signaled.
+  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
+  @retval EFI_TIMEOUT             In blocking mode, the timeout expired before
+                                  the specified AP has finished.
+  @retval EFI_NOT_READY           The specified AP is busy.
+  @retval EFI_NOT_FOUND           The processor with the handle specified by
+                                  ProcessorNumber does not exist.
+  @retval EFI_INVALID_PARAMETER   ProcessorNumber specifies the BSP or disabled AP.
+  @retval EFI_INVALID_PARAMETER   Procedure is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+StartupThisAP (
+  IN  EFI_MP_SERVICES_PROTOCOL  *This,
+  IN  EFI_AP_PROCEDURE          Procedure,
+  IN  UINTN                     ProcessorNumber,
+  IN  EFI_EVENT                 WaitEvent               OPTIONAL,
+  IN  UINTN                     TimeoutInMicroseconds,
+  IN  VOID                      *ProcedureArgument      OPTIONAL,
+  OUT BOOLEAN                   *Finished               OPTIONAL
+  )
+{
+  return MpInitLibStartupThisAP (
+           Procedure,
+           ProcessorNumber,
+           WaitEvent,
+           TimeoutInMicroseconds,
+           ProcedureArgument,
+           Finished
+           );
+}
+
+/**
+  This service switches the requested AP to be the BSP from that point onward.
+  This service changes the BSP for all purposes.   This call can only be performed
+  by the current BSP.
+
+  This service switches the requested AP to be the BSP from that point onward.
+  This service changes the BSP for all purposes. The new BSP can take over the
+  execution of the old BSP and continue seamlessly from where the old one left
+  off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
+  is signaled.
+
+  If the BSP cannot be switched prior to the return from this service, then
+  EFI_UNSUPPORTED must be returned.
+
+  @param[in] This              A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
+  @param[in] ProcessorNumber   The handle number of AP that is to become the new
+                               BSP. The range is from 0 to the total number of
+                               logical processors minus 1. The total number of
+                               logical processors can be retrieved by
+                               EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
+  @param[in] EnableOldBSP      If TRUE, then the old BSP will be listed as an
+                               enabled AP. Otherwise, it will be disabled.
+
+  @retval EFI_SUCCESS             BSP successfully switched.
+  @retval EFI_UNSUPPORTED         Switching the BSP cannot be completed prior to
+                                  this service returning.
+  @retval EFI_UNSUPPORTED         Switching the BSP is not supported.
+  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
+  @retval EFI_NOT_FOUND           The processor with the handle specified by
+                                  ProcessorNumber does not exist.
+  @retval EFI_INVALID_PARAMETER   ProcessorNumber specifies the current BSP or
+                                  a disabled AP.
+  @retval EFI_NOT_READY           The specified AP is busy.
+
+**/
+EFI_STATUS
+EFIAPI
+SwitchBSP (
+  IN EFI_MP_SERVICES_PROTOCOL  *This,
+  IN  UINTN                    ProcessorNumber,
+  IN  BOOLEAN                  EnableOldBSP
+  )
+{
+  return MpInitLibSwitchBSP (ProcessorNumber, EnableOldBSP);
+}
+
+/**
+  This service lets the caller enable or disable an AP from this point onward.
+  This service may only be called from the BSP.
+
+  This service allows the caller enable or disable an AP from this point onward.
+  The caller can optionally specify the health status of the AP by Health. If
+  an AP is being disabled, then the state of the disabled AP is implementation
+  dependent. If an AP is enabled, then the implementation must guarantee that a
+  complete initialization sequence is performed on the AP, so the AP is in a state
+  that is compatible with an MP operating system. This service may not be supported
+  after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled.
+
+  If the enable or disable AP operation cannot be completed prior to the return
+  from this service, then EFI_UNSUPPORTED must be returned.
+
+  @param[in] This              A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
+  @param[in] ProcessorNumber   The handle number of AP.
+                               The range is from 0 to the total number of
+                               logical processors minus 1. The total number of
+                               logical processors can be retrieved by
+                               EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
+  @param[in] EnableAP          Specifies the new state for the processor for
+                               enabled, FALSE for disabled.
+  @param[in] HealthFlag        If not NULL, a pointer to a value that specifies
+                               the new health status of the AP. This flag
+                               corresponds to StatusFlag defined in
+                               EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
+                               the PROCESSOR_HEALTH_STATUS_BIT is used. All other
+                               bits are ignored.  If it is NULL, this parameter
+                               is ignored.
+
+  @retval EFI_SUCCESS             The specified AP was enabled or disabled successfully.
+  @retval EFI_UNSUPPORTED         Enabling or disabling an AP cannot be completed
+                                  prior to this service returning.
+  @retval EFI_UNSUPPORTED         Enabling or disabling an AP is not supported.
+  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
+  @retval EFI_NOT_FOUND           Processor with the handle specified by ProcessorNumber
+                                  does not exist.
+  @retval EFI_INVALID_PARAMETER   ProcessorNumber specifies the BSP.
+
+**/
+EFI_STATUS
+EFIAPI
+EnableDisableAP (
+  IN  EFI_MP_SERVICES_PROTOCOL  *This,
+  IN  UINTN                     ProcessorNumber,
+  IN  BOOLEAN                   EnableAP,
+  IN  UINT32                    *HealthFlag OPTIONAL
+  )
+{
+  return MpInitLibEnableDisableAP (ProcessorNumber, EnableAP, HealthFlag);
+}
+
+/**
+  This return the handle number for the calling processor.  This service may be
+  called from the BSP and APs.
+
+  This service returns the processor handle number for the calling processor.
+  The returned value is in the range from 0 to the total number of logical
+  processors minus 1. The total number of logical processors can be retrieved
+  with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be
+  called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER
+  is returned. Otherwise, the current processors handle number is returned in
+  ProcessorNumber, and EFI_SUCCESS is returned.
+
+  @param[in]  This             A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
+  @param[out] ProcessorNumber  Pointer to the handle number of AP.
+                               The range is from 0 to the total number of
+                               logical processors minus 1. The total number of
+                               logical processors can be retrieved by
+                               EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
+
+  @retval EFI_SUCCESS             The current processor handle number was returned
+                                  in ProcessorNumber.
+  @retval EFI_INVALID_PARAMETER   ProcessorNumber is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+WhoAmI (
+  IN EFI_MP_SERVICES_PROTOCOL  *This,
+  OUT UINTN                    *ProcessorNumber
+  )
+{
+  return MpInitLibWhoAmI (ProcessorNumber);
+}
+
+/**
+  Initialize Multi-processor support.
+**/
+VOID
+InitializeMpSupport (
+  VOID
+  )
+{
+  EFI_STATUS  Status;
+  UINTN       NumberOfProcessors;
+  UINTN       NumberOfEnabledProcessors;
+
+  //
+  // Wakeup APs to do initialization
+  //
+  Status = MpInitLibInitialize ();
+  ASSERT_EFI_ERROR (Status);
+
+  MpInitLibGetNumberOfProcessors (&NumberOfProcessors, &NumberOfEnabledProcessors);
+  mNumberOfProcessors = NumberOfProcessors;
+  DEBUG ((DEBUG_INFO, "Detect CPU count: %d\n", mNumberOfProcessors));
+
+  Status = gBS->InstallMultipleProtocolInterfaces (
+                  &mMpServiceHandle,
+                  &gEfiMpServiceProtocolGuid,
+                  &mMpServicesTemplate,
+                  NULL
+                  );
+  ASSERT_EFI_ERROR (Status);
+}
diff --git a/UefiCpuPkg/CpuDxeLoongArch64/CpuMp.h b/UefiCpuPkg/CpuDxeLoongArch64/CpuMp.h
new file mode 100644
index 0000000000..13c4b44444
--- /dev/null
+++ b/UefiCpuPkg/CpuDxeLoongArch64/CpuMp.h
@@ -0,0 +1,471 @@
+/** @file
+  CPU DXE MP support
+
+  Copyright (c) 2024, Loongson Technology Corporation Limited. All rights reserved.<BR>
+  SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#ifndef CPU_MP_H_
+#define CPU_MP_H_
+
+#define SMP_BOOT_CPU  BIT0
+
+/**
+  Initialize Multi-processor support.
+
+**/
+VOID
+InitializeMpSupport (
+  VOID
+  );
+
+/**
+  This service retrieves the number of logical processor in the platform
+  and the number of those logical processors that are enabled on this boot.
+  This service may only be called from the BSP.
+
+  This function is used to retrieve the following information:
+    - The number of logical processors that are present in the system.
+    - The number of enabled logical processors in the system at the instant
+      this call is made.
+
+  Because MP Service Protocol provides services to enable and disable processors
+  dynamically, the number of enabled logical processors may vary during the
+  course of a boot session.
+
+  If this service is called from an AP, then EFI_DEVICE_ERROR is returned.
+  If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
+  EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors
+  is returned in NumberOfProcessors, the number of currently enabled processor
+  is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned.
+
+  @param[in]  This                        A pointer to the EFI_MP_SERVICES_PROTOCOL
+                                          instance.
+  @param[out] NumberOfProcessors          Pointer to the total number of logical
+                                          processors in the system, including the BSP
+                                          and disabled APs.
+  @param[out] NumberOfEnabledProcessors   Pointer to the number of enabled logical
+                                          processors that exist in system, including
+                                          the BSP.
+
+  @retval EFI_SUCCESS             The number of logical processors and enabled
+                                  logical processors was retrieved.
+  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
+  @retval EFI_INVALID_PARAMETER   NumberOfProcessors is NULL.
+  @retval EFI_INVALID_PARAMETER   NumberOfEnabledProcessors is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+GetNumberOfProcessors (
+  IN  EFI_MP_SERVICES_PROTOCOL  *This,
+  OUT UINTN                     *NumberOfProcessors,
+  OUT UINTN                     *NumberOfEnabledProcessors
+  );
+
+/**
+  Gets detailed MP-related information on the requested processor at the
+  instant this call is made. This service may only be called from the BSP.
+
+  This service retrieves detailed MP-related information about any processor
+  on the platform. Note the following:
+    - The processor information may change during the course of a boot session.
+    - The information presented here is entirely MP related.
+
+  Information regarding the number of caches and their sizes, frequency of operation,
+  slot numbers is all considered platform-related information and is not provided
+  by this service.
+
+  @param[in]  This                  A pointer to the EFI_MP_SERVICES_PROTOCOL
+                                    instance.
+  @param[in]  ProcessorNumber       The handle number of processor.
+  @param[out] ProcessorInfoBuffer   A pointer to the buffer where information for
+                                    the requested processor is deposited.
+
+  @retval EFI_SUCCESS             Processor information was returned.
+  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
+  @retval EFI_INVALID_PARAMETER   ProcessorInfoBuffer is NULL.
+  @retval EFI_NOT_FOUND           The processor with the handle specified by
+                                  ProcessorNumber does not exist in the platform.
+
+**/
+EFI_STATUS
+EFIAPI
+GetProcessorInfo (
+  IN  EFI_MP_SERVICES_PROTOCOL   *This,
+  IN  UINTN                      ProcessorNumber,
+  OUT EFI_PROCESSOR_INFORMATION  *ProcessorInfoBuffer
+  );
+
+/**
+  This service executes a caller provided function on all enabled APs. APs can
+  run either simultaneously or one at a time in sequence. This service supports
+  both blocking and non-blocking requests. The non-blocking requests use EFI
+  events so the BSP can detect when the APs have finished. This service may only
+  be called from the BSP.
+
+  This function is used to dispatch all the enabled APs to the function specified
+  by Procedure.  If any enabled AP is busy, then EFI_NOT_READY is returned
+  immediately and Procedure is not started on any AP.
+
+  If SingleThread is TRUE, all the enabled APs execute the function specified by
+  Procedure one by one, in ascending order of processor handle number. Otherwise,
+  all the enabled APs execute the function specified by Procedure simultaneously.
+
+  If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all
+  APs finish or TimeoutInMicroseconds expires. Otherwise, execution is in non-blocking
+  mode, and the BSP returns from this service without waiting for APs. If a
+  non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
+  is signaled, then EFI_UNSUPPORTED must be returned.
+
+  If the timeout specified by TimeoutInMicroseconds expires before all APs return
+  from Procedure, then Procedure on the failed APs is terminated. All enabled APs
+  are always available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
+  and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its
+  content points to the list of processor handle numbers in which Procedure was
+  terminated.
+
+  Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
+  to make sure that the nature of the code that is executed on the BSP and the
+  dispatched APs is well controlled. The MP Services Protocol does not guarantee
+  that the Procedure function is MP-safe. Hence, the tasks that can be run in
+  parallel are limited to certain independent tasks and well-controlled exclusive
+  code. EFI services and protocols may not be called by APs unless otherwise
+  specified.
+
+  In blocking execution mode, BSP waits until all APs finish or
+  TimeoutInMicroseconds expires.
+
+  In non-blocking execution mode, BSP is freed to return to the caller and then
+  proceed to the next task without having to wait for APs. The following
+  sequence needs to occur in a non-blocking execution mode:
+
+    -# The caller that intends to use this MP Services Protocol in non-blocking
+       mode creates WaitEvent by calling the EFI CreateEvent() service.  The caller
+       invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter WaitEvent
+       is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests
+       the function specified by Procedure to be started on all the enabled APs,
+       and releases the BSP to continue with other tasks.
+    -# The caller can use the CheckEvent() and WaitForEvent() services to check
+       the state of the WaitEvent created in step 1.
+    -# When the APs complete their task or TimeoutInMicroSecondss expires, the MP
+       Service signals WaitEvent by calling the EFI SignalEvent() function. If
+       FailedCpuList is not NULL, its content is available when WaitEvent is
+       signaled. If all APs returned from Procedure prior to the timeout, then
+       FailedCpuList is set to NULL. If not all APs return from Procedure before
+       the timeout, then FailedCpuList is filled in with the list of the failed
+       APs. The buffer is allocated by MP Service Protocol using AllocatePool().
+       It is the caller's responsibility to free the buffer with FreePool() service.
+    -# This invocation of SignalEvent() function informs the caller that invoked
+       EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed
+       the specified task or a timeout occurred. The contents of FailedCpuList
+       can be examined to determine which APs did not complete the specified task
+       prior to the timeout.
+
+  @param[in]  This                    A pointer to the EFI_MP_SERVICES_PROTOCOL
+                                      instance.
+  @param[in]  Procedure               A pointer to the function to be run on
+                                      enabled APs of the system. See type
+                                      EFI_AP_PROCEDURE.
+  @param[in]  SingleThread            If TRUE, then all the enabled APs execute
+                                      the function specified by Procedure one by
+                                      one, in ascending order of processor handle
+                                      number.  If FALSE, then all the enabled APs
+                                      execute the function specified by Procedure
+                                      simultaneously.
+  @param[in]  WaitEvent               The event created by the caller with CreateEvent()
+                                      service.  If it is NULL, then execute in
+                                      blocking mode. BSP waits until all APs finish
+                                      or TimeoutInMicroseconds expires.  If it's
+                                      not NULL, then execute in non-blocking mode.
+                                      BSP requests the function specified by
+                                      Procedure to be started on all the enabled
+                                      APs, and go on executing immediately. If
+                                      all return from Procedure, or TimeoutInMicroseconds
+                                      expires, this event is signaled. The BSP
+                                      can use the CheckEvent() or WaitForEvent()
+                                      services to check the state of event.  Type
+                                      EFI_EVENT is defined in CreateEvent() in
+                                      the Unified Extensible Firmware Interface
+                                      Specification.
+  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
+                                      APs to return from Procedure, either for
+                                      blocking or non-blocking mode. Zero means
+                                      infinity.  If the timeout expires before
+                                      all APs return from Procedure, then Procedure
+                                      on the failed APs is terminated. All enabled
+                                      APs are available for next function assigned
+                                      by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
+                                      or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
+                                      If the timeout expires in blocking mode,
+                                      BSP returns EFI_TIMEOUT.  If the timeout
+                                      expires in non-blocking mode, WaitEvent
+                                      is signaled with SignalEvent().
+  @param[in]  ProcedureArgument       The parameter passed into Procedure for
+                                      all APs.
+  @param[out] FailedCpuList           If NULL, this parameter is ignored. Otherwise,
+                                      if all APs finish successfully, then its
+                                      content is set to NULL. If not all APs
+                                      finish before timeout expires, then its
+                                      content is set to address of the buffer
+                                      holding handle numbers of the failed APs.
+                                      The buffer is allocated by MP Service Protocol,
+                                      and it's the caller's responsibility to
+                                      free the buffer with FreePool() service.
+                                      In blocking mode, it is ready for consumption
+                                      when the call returns. In non-blocking mode,
+                                      it is ready when WaitEvent is signaled.  The
+                                      list of failed CPU is terminated by
+                                      END_OF_CPU_LIST.
+
+  @retval EFI_SUCCESS             In blocking mode, all APs have finished before
+                                  the timeout expired.
+  @retval EFI_SUCCESS             In non-blocking mode, function has been dispatched
+                                  to all enabled APs.
+  @retval EFI_UNSUPPORTED         A non-blocking mode request was made after the
+                                  UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
+                                  signaled.
+  @retval EFI_DEVICE_ERROR        Caller processor is AP.
+  @retval EFI_NOT_STARTED         No enabled APs exist in the system.
+  @retval EFI_NOT_READY           Any enabled APs are busy.
+  @retval EFI_TIMEOUT             In blocking mode, the timeout expired before
+                                  all enabled APs have finished.
+  @retval EFI_INVALID_PARAMETER   Procedure is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+StartupAllAPs (
+  IN  EFI_MP_SERVICES_PROTOCOL  *This,
+  IN  EFI_AP_PROCEDURE          Procedure,
+  IN  BOOLEAN                   SingleThread,
+  IN  EFI_EVENT                 WaitEvent               OPTIONAL,
+  IN  UINTN                     TimeoutInMicroseconds,
+  IN  VOID                      *ProcedureArgument      OPTIONAL,
+  OUT UINTN                     **FailedCpuList         OPTIONAL
+  );
+
+/**
+  This service lets the caller get one enabled AP to execute a caller-provided
+  function. The caller can request the BSP to either wait for the completion
+  of the AP or just proceed with the next task by using the EFI event mechanism.
+  See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking
+  execution support.  This service may only be called from the BSP.
+
+  This function is used to dispatch one enabled AP to the function specified by
+  Procedure passing in the argument specified by ProcedureArgument.  If WaitEvent
+  is NULL, execution is in blocking mode. The BSP waits until the AP finishes or
+  TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode.
+  BSP proceeds to the next task without waiting for the AP. If a non-blocking mode
+  is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled,
+  then EFI_UNSUPPORTED must be returned.
+
+  If the timeout specified by TimeoutInMicroseconds expires before the AP returns
+  from Procedure, then execution of Procedure by the AP is terminated. The AP is
+  available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
+  EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
+
+  @param[in]  This                    A pointer to the EFI_MP_SERVICES_PROTOCOL
+                                      instance.
+  @param[in]  Procedure               A pointer to the function to be run on
+                                      enabled APs of the system. See type
+                                      EFI_AP_PROCEDURE.
+  @param[in]  ProcessorNumber         The handle number of the AP. The range is
+                                      from 0 to the total number of logical
+                                      processors minus 1. The total number of
+                                      logical processors can be retrieved by
+                                      EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
+  @param[in]  WaitEvent               The event created by the caller with CreateEvent()
+                                      service.  If it is NULL, then execute in
+                                      blocking mode. BSP waits until all APs finish
+                                      or TimeoutInMicroseconds expires.  If it's
+                                      not NULL, then execute in non-blocking mode.
+                                      BSP requests the function specified by
+                                      Procedure to be started on all the enabled
+                                      APs, and go on executing immediately. If
+                                      all return from Procedure or TimeoutInMicroseconds
+                                      expires, this event is signaled. The BSP
+                                      can use the CheckEvent() or WaitForEvent()
+                                      services to check the state of event.  Type
+                                      EFI_EVENT is defined in CreateEvent() in
+                                      the Unified Extensible Firmware Interface
+                                      Specification.
+  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
+                                      APs to return from Procedure, either for
+                                      blocking or non-blocking mode. Zero means
+                                      infinity.  If the timeout expires before
+                                      all APs return from Procedure, then Procedure
+                                      on the failed APs is terminated. All enabled
+                                      APs are available for next function assigned
+                                      by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
+                                      or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
+                                      If the timeout expires in blocking mode,
+                                      BSP returns EFI_TIMEOUT.  If the timeout
+                                      expires in non-blocking mode, WaitEvent
+                                      is signaled with SignalEvent().
+  @param[in]  ProcedureArgument       The parameter passed into Procedure for
+                                      all APs.
+  @param[out] Finished                If NULL, this parameter is ignored.  In
+                                      blocking mode, this parameter is ignored.
+                                      In non-blocking mode, if AP returns from
+                                      Procedure before the timeout expires, its
+                                      content is set to TRUE. Otherwise, the
+                                      value is set to FALSE. The caller can
+                                      determine if the AP returned from Procedure
+                                      by evaluating this value.
+
+  @retval EFI_SUCCESS             In blocking mode, specified AP finished before
+                                  the timeout expires.
+  @retval EFI_SUCCESS             In non-blocking mode, the function has been
+                                  dispatched to specified AP.
+  @retval EFI_UNSUPPORTED         A non-blocking mode request was made after the
+                                  UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
+                                  signaled.
+  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
+  @retval EFI_TIMEOUT             In blocking mode, the timeout expired before
+                                  the specified AP has finished.
+  @retval EFI_NOT_READY           The specified AP is busy.
+  @retval EFI_NOT_FOUND           The processor with the handle specified by
+                                  ProcessorNumber does not exist.
+  @retval EFI_INVALID_PARAMETER   ProcessorNumber specifies the BSP or disabled AP.
+  @retval EFI_INVALID_PARAMETER   Procedure is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+StartupThisAP (
+  IN  EFI_MP_SERVICES_PROTOCOL  *This,
+  IN  EFI_AP_PROCEDURE          Procedure,
+  IN  UINTN                     ProcessorNumber,
+  IN  EFI_EVENT                 WaitEvent               OPTIONAL,
+  IN  UINTN                     TimeoutInMicroseconds,
+  IN  VOID                      *ProcedureArgument      OPTIONAL,
+  OUT BOOLEAN                   *Finished               OPTIONAL
+  );
+
+/**
+  This service switches the requested AP to be the BSP from that point onward.
+  This service changes the BSP for all purposes.   This call can only be performed
+  by the current BSP.
+
+  This service switches the requested AP to be the BSP from that point onward.
+  This service changes the BSP for all purposes. The new BSP can take over the
+  execution of the old BSP and continue seamlessly from where the old one left
+  off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
+  is signaled.
+
+  If the BSP cannot be switched prior to the return from this service, then
+  EFI_UNSUPPORTED must be returned.
+
+  @param[in] This              A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
+  @param[in] ProcessorNumber   The handle number of AP that is to become the new
+                               BSP. The range is from 0 to the total number of
+                               logical processors minus 1. The total number of
+                               logical processors can be retrieved by
+                               EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
+  @param[in] EnableOldBSP      If TRUE, then the old BSP will be listed as an
+                               enabled AP. Otherwise, it will be disabled.
+
+  @retval EFI_SUCCESS             BSP successfully switched.
+  @retval EFI_UNSUPPORTED         Switching the BSP cannot be completed prior to
+                                  this service returning.
+  @retval EFI_UNSUPPORTED         Switching the BSP is not supported.
+  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
+  @retval EFI_NOT_FOUND           The processor with the handle specified by
+                                  ProcessorNumber does not exist.
+  @retval EFI_INVALID_PARAMETER   ProcessorNumber specifies the current BSP or
+                                  a disabled AP.
+  @retval EFI_NOT_READY           The specified AP is busy.
+
+**/
+EFI_STATUS
+EFIAPI
+SwitchBSP (
+  IN EFI_MP_SERVICES_PROTOCOL  *This,
+  IN  UINTN                    ProcessorNumber,
+  IN  BOOLEAN                  EnableOldBSP
+  );
+
+/**
+  This service lets the caller enable or disable an AP from this point onward.
+  This service may only be called from the BSP.
+
+  This service allows the caller enable or disable an AP from this point onward.
+  The caller can optionally specify the health status of the AP by Health. If
+  an AP is being disabled, then the state of the disabled AP is implementation
+  dependent. If an AP is enabled, then the implementation must guarantee that a
+  complete initialization sequence is performed on the AP, so the AP is in a state
+  that is compatible with an MP operating system. This service may not be supported
+  after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled.
+
+  If the enable or disable AP operation cannot be completed prior to the return
+  from this service, then EFI_UNSUPPORTED must be returned.
+
+  @param[in] This              A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
+  @param[in] ProcessorNumber   The handle number of AP that is to become the new
+                               BSP. The range is from 0 to the total number of
+                               logical processors minus 1. The total number of
+                               logical processors can be retrieved by
+                               EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
+  @param[in] EnableAP          Specifies the new state for the processor for
+                               enabled, FALSE for disabled.
+  @param[in] HealthFlag        If not NULL, a pointer to a value that specifies
+                               the new health status of the AP. This flag
+                               corresponds to StatusFlag defined in
+                               EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
+                               the PROCESSOR_HEALTH_STATUS_BIT is used. All other
+                               bits are ignored.  If it is NULL, this parameter
+                               is ignored.
+
+  @retval EFI_SUCCESS             The specified AP was enabled or disabled successfully.
+  @retval EFI_UNSUPPORTED         Enabling or disabling an AP cannot be completed
+                                  prior to this service returning.
+  @retval EFI_UNSUPPORTED         Enabling or disabling an AP is not supported.
+  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
+  @retval EFI_NOT_FOUND           Processor with the handle specified by ProcessorNumber
+                                  does not exist.
+  @retval EFI_INVALID_PARAMETER   ProcessorNumber specifies the BSP.
+
+**/
+EFI_STATUS
+EFIAPI
+EnableDisableAP (
+  IN  EFI_MP_SERVICES_PROTOCOL  *This,
+  IN  UINTN                     ProcessorNumber,
+  IN  BOOLEAN                   EnableAP,
+  IN  UINT32                    *HealthFlag OPTIONAL
+  );
+
+/**
+  This return the handle number for the calling processor.  This service may be
+  called from the BSP and APs.
+
+  This service returns the processor handle number for the calling processor.
+  The returned value is in the range from 0 to the total number of logical
+  processors minus 1. The total number of logical processors can be retrieved
+  with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be
+  called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER
+  is returned. Otherwise, the current processors handle number is returned in
+  ProcessorNumber, and EFI_SUCCESS is returned.
+
+  @param[in]  This             A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
+  @param[out] ProcessorNumber  The handle number of AP that is to become the new
+                               BSP. The range is from 0 to the total number of
+                               logical processors minus 1. The total number of
+                               logical processors can be retrieved by
+                               EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
+
+  @retval EFI_SUCCESS             The current processor handle number was returned
+                                  in ProcessorNumber.
+  @retval EFI_INVALID_PARAMETER   ProcessorNumber is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+WhoAmI (
+  IN EFI_MP_SERVICES_PROTOCOL  *This,
+  OUT UINTN                    *ProcessorNumber
+  );
+
+#endif // CPU_MP_H_
diff --git a/UefiCpuPkg/CpuDxeLoongArch64/Exception.c b/UefiCpuPkg/CpuDxeLoongArch64/Exception.c
new file mode 100644
index 0000000000..f87b58858a
--- /dev/null
+++ b/UefiCpuPkg/CpuDxeLoongArch64/Exception.c
@@ -0,0 +1,150 @@
+/** @file Exception.c
+
+  CPU DXE Module initialization exception instance.
+
+  Copyright (c) 2024, Loongson Technology Corporation Limited. All rights reserved.<BR>
+
+  SPDX-License-Identifier: BSD-2-Clause-Patent
+**/
+
+#include "CpuDxe.h"
+#include <Guid/VectorHandoffTable.h>
+#include <Library/CpuExceptionHandlerLib.h>
+
+VOID
+ExceptionEntryStart (
+  VOID
+  );
+
+VOID
+ExceptionEntryEnd (
+  VOID
+  );
+
+/**
+  This function registers and enables the handler specified by InterruptHandler for a processor
+  interrupt or exception type specified by InterruptType. If InterruptHandler is NULL, then the
+  handler for the processor interrupt or exception type specified by InterruptType is uninstalled.
+  The installed handler is called once for each processor interrupt or exception.
+
+  @param  InterruptType    A pointer to the processor's current interrupt state. Set to TRUE if interrupts
+                           are enabled and FALSE if interrupts are disabled.
+  @param  InterruptHandler A pointer to a function of type EFI_CPU_INTERRUPT_HANDLER that is called
+                           when a processor interrupt occurs. If this parameter is NULL, then the handler
+                           will be uninstalled.
+
+  @retval EFI_SUCCESS           The handler for the processor interrupt was successfully installed or uninstalled.
+  @retval EFI_ALREADY_STARTED   InterruptHandler is not NULL, and a handler for InterruptType was
+                                previously installed.
+  @retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for InterruptType was not
+                                previously installed.
+  @retval EFI_UNSUPPORTED       The interrupt specified by InterruptType is not supported.
+
+**/
+EFI_STATUS
+RegisterInterruptHandler (
+  IN EFI_EXCEPTION_TYPE         InterruptType,
+  IN EFI_CPU_INTERRUPT_HANDLER  InterruptHandler
+  )
+{
+  return (EFI_STATUS)RegisterCpuInterruptHandler (InterruptType, InterruptHandler);
+}
+
+/**
+  Update the exception start entry code.
+
+  @retval EFI_SUCCESS           Update the exception start entry code down.
+  @retval EFI_OUT_OF_RESOURCES  The start entry code size out of bounds.
+
+**/
+EFI_STATUS
+EFIAPI
+UpdateExceptionStartEntry (
+  VOID
+  )
+{
+  EFI_PHYSICAL_ADDRESS  ExceptionStartEntry;
+  UINTN                 VectorLength;
+  UINTN                 MaxLength;
+  UINTN                 MaxSizeOfVector;
+
+  VectorLength = (UINTN)ExceptionEntryEnd - (UINTN)ExceptionEntryStart;
+
+  //
+  // A vector is up to 512 bytes.
+  //
+  MaxSizeOfVector = 512;
+  MaxLength       = (MAX_LOONGARCH_EXCEPTION + MAX_LOONGARCH_INTERRUPT) * MaxSizeOfVector;
+
+  if (VectorLength > MaxLength) {
+    return EFI_OUT_OF_RESOURCES;
+  }
+
+  ExceptionStartEntry = PcdGet64 (PcdCpuExceptionVectorBaseAddress);
+
+  InvalidateInstructionCacheRange ((VOID *)ExceptionStartEntry, VectorLength);
+  CopyMem ((VOID *)ExceptionStartEntry, (VOID *)ExceptionEntryStart, VectorLength);
+  InvalidateInstructionCacheRange ((VOID *)ExceptionStartEntry, VectorLength);
+  InvalidateDataCache ();
+
+  return EFI_SUCCESS;
+}
+
+/**
+  Initialize interrupt handling for DXE phase.
+
+  @param  Cpu A pointer of EFI_CPU_ARCH_PROTOCOL instance.
+
+  @return VOID.
+
+**/
+VOID
+InitializeExceptions (
+  IN EFI_CPU_ARCH_PROTOCOL  *Cpu
+  )
+{
+  EFI_STATUS               Status;
+  EFI_VECTOR_HANDOFF_INFO  *VectorInfoList;
+  EFI_VECTOR_HANDOFF_INFO  *VectorInfo;
+  BOOLEAN                  IrqEnabled;
+
+  VectorInfo = (EFI_VECTOR_HANDOFF_INFO *)NULL;
+  Status     = EfiGetSystemConfigurationTable (&gEfiVectorHandoffTableGuid, (VOID **)&VectorInfoList);
+
+  if ((Status == EFI_SUCCESS) && (VectorInfoList != NULL)) {
+    VectorInfo = VectorInfoList;
+  }
+
+  //
+  // Disable interrupts
+  //
+  Cpu->GetInterruptState (Cpu, &IrqEnabled);
+  if (IrqEnabled) {
+    Cpu->DisableInterrupt (Cpu);
+  }
+
+  //
+  // Update the Exception Start Entry code to point into CpuDxe.
+  //
+  Status = UpdateExceptionStartEntry ();
+  if (EFI_ERROR (Status)) {
+    DebugPrint (EFI_D_ERROR, "[%a]: Exception start entry code out of bounds!\n", __func__);
+    ASSERT_EFI_ERROR (Status);
+  }
+
+  //
+  // Intialize the CpuExceptionHandlerLib so we take over the exception vector table from the DXE Core
+  //
+  Status = InitializeCpuExceptionHandlers (VectorInfo);
+  ASSERT_EFI_ERROR (Status);
+
+  //
+  // Enable interrupts
+  //
+  DebugPrint (EFI_D_INFO, "InitializeExceptions,IrqEnabled = %x\n", IrqEnabled);
+  if (!IrqEnabled) {
+    Status = Cpu->EnableInterrupt (Cpu);
+  }
+
+  ASSERT_EFI_ERROR (Status);
+}
diff --git a/UefiCpuPkg/UefiCpuPkg.dsc b/UefiCpuPkg/UefiCpuPkg.dsc
index 0f0bce0029..68e36f6a8e 100644
--- a/UefiCpuPkg/UefiCpuPkg.dsc
+++ b/UefiCpuPkg/UefiCpuPkg.dsc
@@ -215,6 +215,7 @@
   UefiCpuPkg/Library/LoongArch64CpuMmuLib/DxeCpuMmuLib.inf
   UefiCpuPkg/Library/LoongArch64MpInitLib/PeiMpInitLib.inf
   UefiCpuPkg/Library/LoongArch64MpInitLib/DxeMpInitLib.inf
+  UefiCpuPkg/CpuDxeLoongArch64/CpuDxe.inf
 
 [BuildOptions]
   *_*_*_CC_FLAGS = -D DISABLE_NEW_DEPRECATED_INTERFACES
-- 
2.27.0



-=-=-=-=-=-=-=-=-=-=-=-
Groups.io Links: You receive all messages sent to this group.
View/Reply Online (#112958): https://edk2.groups.io/g/devel/message/112958
Mute This Topic: https://groups.io/mt/103398611/7686176
Group Owner: devel+owner@edk2.groups.io
Unsubscribe: https://edk2.groups.io/g/devel/unsub [rebecca@openfw.io]
-=-=-=-=-=-=-=-=-=-=-=-



  parent reply	other threads:[~2023-12-28 10:06 UTC|newest]

Thread overview: 43+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2023-12-28 10:03 [edk2-devel] [PATCH v5 00/36] Enable LoongArch virtual machine in edk2 Chao Li
2023-12-28 10:04 ` [edk2-devel] [PATCH v5 01/36] MdePkg: Add the header file named Csr.h for LoongArch64 Chao Li
2023-12-28 10:04 ` [edk2-devel] [PATCH v5 02/36] MdePkg: Add LoongArch64 FPU function set into BaseCpuLib Chao Li
2023-12-28 10:04 ` [edk2-devel] [PATCH v5 03/36] MdePkg: Add LoongArch64 exception function set into BaseLib Chao Li
2023-12-28 10:05 ` [edk2-devel] [PATCH v5 04/36] MdePkg: Add LoongArch64 local interrupt " Chao Li
2023-12-28 10:05 ` [edk2-devel] [PATCH v5 06/36] MdePkg: Add read stable counter operation for LoongArch Chao Li
2023-12-28 10:05 ` [edk2-devel] [PATCH v5 07/36] MdePkg: Add CSR " Chao Li
2023-12-28 10:05 ` [edk2-devel] [PATCH v5 08/36] MdePkg: Add IOCSR " Chao Li
2023-12-28 10:05 ` [edk2-devel] [PATCH v5 09/36] MdePkg: Add a new library named PeiServicesTablePointerLibKs0 Chao Li
2023-12-28 10:05 ` [edk2-devel] [PATCH v5 10/36] UefiCpuPkg: Add LoongArch64 CPU Timer library Chao Li
2023-12-28 10:05 ` [edk2-devel] [PATCH v5 11/36] UefiCpuPkg: Add CPU exception library for LoongArch Chao Li
2023-12-28 10:05 ` [edk2-devel] [PATCH v5 12/36] UefiCpuPkg: Add CpuMmuLib.h to UefiCpuPkg Chao Li
2023-12-28 10:06 ` [edk2-devel] [PATCH v5 13/36] UefiCpuPkg: Add LoongArch64CpuMmuLib " Chao Li
2023-12-28 10:06 ` [edk2-devel] [PATCH v5 14/36] UefiCpuPkg: Add multiprocessor library for LoongArch64 Chao Li
2023-12-28 10:06 ` Chao Li [this message]
2023-12-28 10:06 ` [edk2-devel] [PATCH v5 16/36] EmbeddedPkg: Add PcdPrePiCpuIoSize width for LOONGARCH64 Chao Li
2023-12-28 10:06 ` [edk2-devel] [PATCH v5 17/36] ArmVirtPkg: Move PCD of FDT base address and FDT padding to OvmfPkg Chao Li
2023-12-28 10:06 ` [edk2-devel] [PATCH v5 18/36] UefiCpuPkg: Add a new CPU IO 2 driver named CpuMmio2Dxe Chao Li
2023-12-28 10:06 ` [edk2-devel] [PATCH v5 19/36] ArmVirtPkg: Enable CpuMmio2Dxe Chao Li
2023-12-28 10:06 ` [edk2-devel] [PATCH v5 20/36] OvmfPkg/RiscVVirt: " Chao Li
2023-12-28 10:06 ` [edk2-devel] [PATCH v5 21/36] OvmfPkg/RiscVVirt: Remove PciCpuIo2Dxe from RiscVVirt Chao Li
2023-12-28 10:06 ` [edk2-devel] [PATCH v5 22/36] ArmVirtPkg: Move the FdtSerialPortAddressLib to OvmfPkg Chao Li
2023-12-28 10:06 ` [edk2-devel] [PATCH v5 23/36] ArmVirtPkg: Move PcdTerminalTypeGuidBuffer and PcdUninstallMemAttrProtocol into OvmfPkg Chao Li
2023-12-28 10:07 ` [edk2-devel] [PATCH v5 24/36] ArmVirtPkg: Move PlatformBootManagerLib to OvmfPkg Chao Li
2023-12-28 10:07 ` [edk2-devel] [PATCH v5 25/36] OvmfPkg/LoongArchVirt: Add stable timer driver Chao Li
2023-12-28 10:07 ` [edk2-devel] [PATCH v5 26/36] OvmfPkg/LoongArchVirt: Add a NULL library named CollectApResouceLibNull Chao Li
2023-12-28 10:07 ` [edk2-devel] [PATCH v5 27/36] OvmfPkg/LoongArchVirt: Add serial port hook library Chao Li
2024-01-03 10:07   ` maobibo
2023-12-28 10:07 ` [edk2-devel] [PATCH v5 28/36] OvmfPkg/LoongArchVirt: Add the early serial port output library Chao Li
2023-12-28 10:07 ` [edk2-devel] [PATCH v5 29/36] OvmfPkg/LoongArchVirt: Add real time clock library Chao Li
2024-01-03 10:07   ` maobibo
2023-12-28 10:07 ` [edk2-devel] [PATCH v5 30/36] OvmfPkg/LoongArchVirt: Add NorFlashQemuLib Chao Li
2023-12-28 10:07 ` [edk2-devel] [PATCH v5 31/36] OvmfPkg/LoongArchVirt: Add FdtQemuFwCfgLib Chao Li
2023-12-28 10:07 ` [edk2-devel] [PATCH v5 32/36] OvmfPkg/LoongArchVirt: Add reset system library Chao Li
2024-01-04  1:28   ` maobibo
2023-12-28 10:07 ` [edk2-devel] [PATCH v5 33/36] OvmfPkg/LoongArchVirt: Support SEC phase Chao Li
2024-01-04  1:49   ` maobibo
2024-01-04  6:28     ` Chao Li
2023-12-28 10:07 ` [edk2-devel] [PATCH v5 34/36] OvmfPkg/LoongArchVirt: Support PEI phase Chao Li
2024-01-03  8:12   ` maobibo
2023-12-28 10:07 ` [edk2-devel] [PATCH v5 35/36] OvmfPkg/LoongArchVirt: Add build file Chao Li
2023-12-28 10:08 ` [edk2-devel] [PATCH v5 36/36] OvmfPkg/LoongArchVirt: Add self introduction file Chao Li
     [not found] ` <17A4F6E18EBFD408.18542@groups.io>
2023-12-29  6:27   ` [edk2-devel] [PATCH v5 20/36] OvmfPkg/RiscVVirt: Enable CpuMmio2Dxe Chao Li

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-list from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20231228100615.1765554-1-lichao@loongson.cn \
    --to=devel@edk2.groups.io \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox