* [PATCH v3 3/7] ArmPkg/ArmSoftFloatLib: remove source files that are no longer used
2019-05-31 12:49 [PATCH v3 0/7] update ArmSoftFloatLib to latest upstream version Ard Biesheuvel
2019-05-31 12:49 ` [PATCH v3 1/7] ArmPkg: import Berkeley Softfloat library as git submodule Ard Biesheuvel
2019-05-31 12:49 ` [PATCH v3 2/7] ArmPkg/ArmSoftFloatLib: switch to new version of softfloat library Ard Biesheuvel
@ 2019-05-31 12:49 ` Ard Biesheuvel
2019-05-31 12:49 ` [PATCH v3 4/7] BaseTools/tools_def CLANG3x ARM AARCH64: force use of C99 standard Ard Biesheuvel
` (4 subsequent siblings)
7 siblings, 0 replies; 24+ messages in thread
From: Ard Biesheuvel @ 2019-05-31 12:49 UTC (permalink / raw)
To: devel
Cc: Ard Biesheuvel, Laszlo Ersek, Gao, Liming, Wang, Jian J,
Leif Lindholm, Michael D Kinney
Now that we have switched to a new version of the SoftFloat code,
remove the source files that make up the old implementation, and
are no longer referenced.
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1845
Acked-by: Jian J Wang <jian.j.wang@intel.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
---
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_cdcmp.asm | 41 -
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_cfcmp.asm | 37 -
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpeq.c | 30 -
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpge.c | 28 -
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpgt.c | 30 -
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmple.c | 30 -
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmplt.c | 30 -
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpun.c | 35 -
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpeq.c | 30 -
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpge.c | 30 -
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpgt.c | 30 -
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmple.c | 30 -
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmplt.c | 30 -
ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpun.c | 35 -
ArmPkg/Library/ArmSoftFloatLib/Arm/softfloat.h | 345 ---
ArmPkg/Library/ArmSoftFloatLib/arm-gcc.h | 108 -
ArmPkg/Library/ArmSoftFloatLib/bits32/softfloat-macros | 648 ------
ArmPkg/Library/ArmSoftFloatLib/bits32/softfloat.c | 2354 --------------------
ArmPkg/Library/ArmSoftFloatLib/milieu.h | 38 -
ArmPkg/Library/ArmSoftFloatLib/softfloat-for-gcc.h | 242 --
ArmPkg/Library/ArmSoftFloatLib/softfloat-specialize | 525 -----
21 files changed, 4706 deletions(-)
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_cdcmp.asm b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_cdcmp.asm
deleted file mode 100644
index 47ec383f8053..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_cdcmp.asm
+++ /dev/null
@@ -1,41 +0,0 @@
-//------------------------------------------------------------------------------
-//
-// Copyright (c) 2015, Linaro Limited. All rights reserved.
-//
-// SPDX-License-Identifier: BSD-2-Clause-Patent
-//
-//------------------------------------------------------------------------------
-
- EXPORT __aeabi_cdrcmple
- EXPORT __aeabi_cdcmpeq
- EXPORT __aeabi_cdcmple
- IMPORT _softfloat_float64_eq
- IMPORT _softfloat_float64_lt
-
- AREA __aeabi_cdcmp, CODE, READONLY
- PRESERVE8
-
-__aeabi_cdrcmple
- MOV IP, R0
- MOV R0, R2
- MOV R2, IP
-
- MOV IP, R1
- MOV R1, R3
- MOV R3, IP
-
-__aeabi_cdcmpeq
-__aeabi_cdcmple
- PUSH {R0 - R3, IP, LR}
- BL _softfloat_float64_eq
- SUB IP, R0, #1
- CMP IP, #0 // sets C and Z if R0 == 1
- POPEQ {R0 - R3, IP, PC}
-
- LDM SP, {R0 - R3}
- BL _softfloat_float64_lt
- SUB IP, R0, #1
- CMP IP, #1 // sets C if R0 == 0
- POP {R0 - R3, IP, PC}
-
- END
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_cfcmp.asm b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_cfcmp.asm
deleted file mode 100644
index df005a2d6b04..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_cfcmp.asm
+++ /dev/null
@@ -1,37 +0,0 @@
-//------------------------------------------------------------------------------
-//
-// Copyright (c) 2015, Linaro Limited. All rights reserved.
-//
-// SPDX-License-Identifier: BSD-2-Clause-Patent
-//
-//------------------------------------------------------------------------------
-
- EXPORT __aeabi_cfrcmple
- EXPORT __aeabi_cfcmpeq
- EXPORT __aeabi_cfcmple
- IMPORT _softfloat_float32_eq
- IMPORT _softfloat_float32_lt
-
- AREA __aeabi_cfcmp, CODE, READONLY
- PRESERVE8
-
-__aeabi_cfrcmple
- MOV IP, R0
- MOV R0, R1
- MOV R1, IP
-
-__aeabi_cfcmpeq
-__aeabi_cfcmple
- PUSH {R0 - R3, IP, LR}
- BL _softfloat_float32_eq
- SUB IP, R0, #1
- CMP IP, #0 // sets C and Z if R0 == 1
- POPEQ {R0 - R3, IP, PC}
-
- LDM SP, {R0 - R1}
- BL _softfloat_float32_lt
- SUB IP, R0, #1
- CMP IP, #1 // sets C if R0 == 0
- POP {R0 - R3, IP, PC}
-
- END
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpeq.c b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpeq.c
deleted file mode 100644
index 31942ac9e346..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpeq.c
+++ /dev/null
@@ -1,30 +0,0 @@
-/* $NetBSD: __aeabi_dcmpeq.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
-
-/** @file
-*
-* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
-*
-* SPDX-License-Identifier: BSD-2-Clause-Patent
-*
-**/
-
-/*
- * Written by Ben Harris, 2000. This file is in the Public Domain.
- */
-
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: __aeabi_dcmpeq.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-#include "softfloat-for-gcc.h"
-#include "milieu.h"
-#include "softfloat.h"
-
-int __aeabi_dcmpeq(float64, float64);
-
-int
-__aeabi_dcmpeq(float64 a, float64 b)
-{
-
- return float64_eq(a, b);
-}
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpge.c b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpge.c
deleted file mode 100644
index d95371258aa8..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpge.c
+++ /dev/null
@@ -1,28 +0,0 @@
-/* $NetBSD: __aeabi_dcmpge.c,v 1.2 2013/04/16 13:38:34 matt Exp $ */
-/** @file
-*
-* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
-*
-* SPDX-License-Identifier: BSD-2-Clause-Patent
-*
-**/
-/*
- * Written by Ben Harris, 2000. This file is in the Public Domain.
- */
-
-#include "softfloat-for-gcc.h"
-#include "milieu.h"
-#include "softfloat.h"
-
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: __aeabi_dcmpge.c,v 1.2 2013/04/16 13:38:34 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-int __aeabi_dcmpge(float64, float64);
-
-int
-__aeabi_dcmpge(float64 a, float64 b)
-{
-
- return !float64_lt(a, b) && float64_eq(a, a) && float64_eq(b, b);
-}
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpgt.c b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpgt.c
deleted file mode 100644
index d5a092b99721..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpgt.c
+++ /dev/null
@@ -1,30 +0,0 @@
-/* $NetBSD: __aeabi_dcmpgt.c,v 1.2 2013/04/16 13:38:34 matt Exp $ */
-
-/** @file
-*
-* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
-*
-* SPDX-License-Identifier: BSD-2-Clause-Patent
-*
-**/
-
-/*
- * Written by Ben Harris, 2000. This file is in the Public Domain.
- */
-
-#include "softfloat-for-gcc.h"
-#include "milieu.h"
-#include "softfloat.h"
-
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: __aeabi_dcmpgt.c,v 1.2 2013/04/16 13:38:34 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-int __aeabi_dcmpgt(float64, float64);
-
-int
-__aeabi_dcmpgt(float64 a, float64 b)
-{
-
- return !float64_le(a, b) && float64_eq(a, a) && float64_eq(b, b);
-}
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmple.c b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmple.c
deleted file mode 100644
index 20939dd0b229..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmple.c
+++ /dev/null
@@ -1,30 +0,0 @@
-/* $NetBSD: __aeabi_dcmple.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
-
-/** @file
-*
-* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
-*
-* SPDX-License-Identifier: BSD-2-Clause-Patent
-*
-**/
-
-/*
- * Written by Ben Harris, 2000. This file is in the Public Domain.
- */
-
-#include "softfloat-for-gcc.h"
-#include "milieu.h"
-#include "softfloat.h"
-
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: __aeabi_dcmple.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-int __aeabi_dcmple(float64, float64);
-
-int
-__aeabi_dcmple(float64 a, float64 b)
-{
-
- return float64_le(a, b);
-}
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmplt.c b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmplt.c
deleted file mode 100644
index d3ef1b7b32e5..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmplt.c
+++ /dev/null
@@ -1,30 +0,0 @@
-/* $NetBSD: __aeabi_dcmplt.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
-
-/** @file
-*
-* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
-*
-* SPDX-License-Identifier: BSD-2-Clause-Patent
-*
-**/
-
-/*
- * Written by Ben Harris, 2000. This file is in the Public Domain.
- */
-
-#include "softfloat-for-gcc.h"
-#include "milieu.h"
-#include "softfloat.h"
-
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: __aeabi_dcmplt.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-int __aeabi_dcmplt(float64, float64);
-
-int
-__aeabi_dcmplt(float64 a, float64 b)
-{
-
- return float64_lt(a, b);
-}
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpun.c b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpun.c
deleted file mode 100644
index 0e0bc57e2fb8..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_dcmpun.c
+++ /dev/null
@@ -1,35 +0,0 @@
-/* $NetBSD: __aeabi_dcmpun.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
-
-/** @file
-*
-* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
-*
-* SPDX-License-Identifier: BSD-2-Clause-Patent
-*
-**/
-
-/*
- * Written by Richard Earnshaw, 2003. This file is in the Public Domain.
- */
-
-#include "softfloat-for-gcc.h"
-#include "milieu.h"
-#include "softfloat.h"
-
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: __aeabi_dcmpun.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-int __aeabi_dcmpun(float64, float64);
-
-int
-__aeabi_dcmpun(float64 a, float64 b)
-{
- /*
- * The comparison is unordered if either input is a NaN.
- * Test for this by comparing each operand with itself.
- * We must perform both comparisons to correctly check for
- * signalling NaNs.
- */
- return !float64_eq(a, a) || !float64_eq(b, b);
-}
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpeq.c b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpeq.c
deleted file mode 100644
index 1a210b934dda..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpeq.c
+++ /dev/null
@@ -1,30 +0,0 @@
-/* $NetBSD: __aeabi_fcmpeq.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
-
-/** @file
-*
-* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
-*
-* SPDX-License-Identifier: BSD-2-Clause-Patent
-*
-**/
-
-/*
- * Written by Ben Harris, 2000. This file is in the Public Domain.
- */
-
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: __aeabi_fcmpeq.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-#include "softfloat-for-gcc.h"
-#include "milieu.h"
-#include "softfloat.h"
-
-int __aeabi_fcmpeq(float32, float32);
-
-int
-__aeabi_fcmpeq(float32 a, float32 b)
-{
-
- return float32_eq(a, b);
-}
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpge.c b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpge.c
deleted file mode 100644
index 5c99f4d16e54..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpge.c
+++ /dev/null
@@ -1,30 +0,0 @@
-/* $NetBSD: __aeabi_fcmpge.c,v 1.2 2013/04/16 13:38:34 matt Exp $ */
-
-/** @file
-*
-* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
-*
-* SPDX-License-Identifier: BSD-2-Clause-Patent
-*
-**/
-
-/*
- * Written by Ben Harris, 2000. This file is in the Public Domain.
- */
-
-#include "softfloat-for-gcc.h"
-#include "milieu.h"
-#include "softfloat.h"
-
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: __aeabi_fcmpge.c,v 1.2 2013/04/16 13:38:34 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-int __aeabi_fcmpge(float32, float32);
-
-int
-__aeabi_fcmpge(float32 a, float32 b)
-{
-
- return !float32_lt(a, b) && float32_eq(a, a) && float32_eq(b, b);
-}
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpgt.c b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpgt.c
deleted file mode 100644
index 7e4a225a6af7..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpgt.c
+++ /dev/null
@@ -1,30 +0,0 @@
-/* $NetBSD: __aeabi_fcmpgt.c,v 1.2 2013/04/16 13:38:34 matt Exp $ */
-
-/** @file
-*
-* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
-*
-* SPDX-License-Identifier: BSD-2-Clause-Patent
-*
-**/
-
-/*
- * Written by Ben Harris, 2000. This file is in the Public Domain.
- */
-
-#include "softfloat-for-gcc.h"
-#include "milieu.h"
-#include "softfloat.h"
-
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: __aeabi_fcmpgt.c,v 1.2 2013/04/16 13:38:34 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-int __aeabi_fcmpgt(float32, float32);
-
-int
-__aeabi_fcmpgt(float32 a, float32 b)
-{
-
- return !float32_le(a, b) && float32_eq(a, a) && float32_eq(b, b);
-}
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmple.c b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmple.c
deleted file mode 100644
index 97fb070cb8d5..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmple.c
+++ /dev/null
@@ -1,30 +0,0 @@
-/* $NetBSD: __aeabi_fcmple.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
-
-/** @file
-*
-* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
-*
-* SPDX-License-Identifier: BSD-2-Clause-Patent
-*
-**/
-
-/*
- * Written by Ben Harris, 2000. This file is in the Public Domain.
- */
-
-#include "softfloat-for-gcc.h"
-#include "milieu.h"
-#include "softfloat.h"
-
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: __aeabi_fcmple.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-int __aeabi_fcmple(float32, float32);
-
-int
-__aeabi_fcmple(float32 a, float32 b)
-{
-
- return float32_le(a, b);
-}
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmplt.c b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmplt.c
deleted file mode 100644
index 53585f0b8205..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmplt.c
+++ /dev/null
@@ -1,30 +0,0 @@
-/* $NetBSD: __aeabi_fcmplt.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
-
-/** @file
-*
-* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
-*
-* SPDX-License-Identifier: BSD-2-Clause-Patent
-*
-**/
-
-/*
- * Written by Ben Harris, 2000. This file is in the Public Domain.
- */
-
-#include "softfloat-for-gcc.h"
-#include "milieu.h"
-#include "softfloat.h"
-
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: __aeabi_fcmplt.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-int __aeabi_fcmplt(float32, float32);
-
-int
-__aeabi_fcmplt(float32 a, float32 b)
-{
-
- return float32_lt(a, b);
-}
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpun.c b/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpun.c
deleted file mode 100644
index d5e43e319e69..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/__aeabi_fcmpun.c
+++ /dev/null
@@ -1,35 +0,0 @@
-/* $NetBSD: __aeabi_fcmpun.c,v 1.1 2013/04/16 10:37:39 matt Exp $ */
-
-/** @file
-*
-* Copyright (c) 2013 - 2014, ARM Limited. All rights reserved.
-*
-* SPDX-License-Identifier: BSD-2-Clause-Patent
-*
-**/
-
-/*
- * Written by Richard Earnshaw, 2003. This file is in the Public Domain.
- */
-
-#include "softfloat-for-gcc.h"
-#include "milieu.h"
-#include "softfloat.h"
-
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: __aeabi_fcmpun.c,v 1.1 2013/04/16 10:37:39 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-int __aeabi_fcmpun(float32, float32);
-
-int
-__aeabi_fcmpun(float32 a, float32 b)
-{
- /*
- * The comparison is unordered if either input is a NaN.
- * Test for this by comparing each operand with itself.
- * We must perform both comparisons to correctly check for
- * signalling NaNs.
- */
- return !float32_eq(a, a) || !float32_eq(b, b);
-}
diff --git a/ArmPkg/Library/ArmSoftFloatLib/Arm/softfloat.h b/ArmPkg/Library/ArmSoftFloatLib/Arm/softfloat.h
deleted file mode 100644
index a9004f672385..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/Arm/softfloat.h
+++ /dev/null
@@ -1,345 +0,0 @@
-/* $NetBSD: softfloat.h,v 1.10 2013/04/24 18:04:46 matt Exp $ */
-
-/* This is a derivative work. */
-
-/*
-===============================================================================
-
-This C header file is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2a.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
-has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
-TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
-PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
-AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) they include prominent notice that the work is derivative, and (2) they
-include prominent notice akin to these four paragraphs for those parts of
-this code that are retained.
-
-===============================================================================
-*/
-
-/*
--------------------------------------------------------------------------------
-The macro `FLOATX80' must be defined to enable the extended double-precision
-floating-point format `floatx80'. If this macro is not defined, the
-`floatx80' type will not be defined, and none of the functions that either
-input or output the `floatx80' type will be defined. The same applies to
-the `FLOAT128' macro and the quadruple-precision format `float128'.
--------------------------------------------------------------------------------
-*/
-/* #define FLOATX80 */
-/* #define FLOAT128 */
-
-#define FE_INVALID 0x01 /* invalid operation exception */
-#define FE_DIVBYZERO 0x02 /* divide-by-zero exception */
-#define FE_OVERFLOW 0x04 /* overflow exception */
-#define FE_UNDERFLOW 0x08 /* underflow exception */
-#define FE_INEXACT 0x10 /* imprecise (loss of precision; "inexact") */
-
-#define FE_ALL_EXCEPT 0x1f
-
-#define FE_TONEAREST 0 /* round to nearest representable number */
-#define FE_UPWARD 1 /* round toward positive infinity */
-#define FE_DOWNWARD 2 /* round toward negative infinity */
-#define FE_TOWARDZERO 3 /* round to zero (truncate) */
-
-typedef int fp_except;
-
-/* Bit defines for fp_except */
-
-#define FP_X_INV FE_INVALID /* invalid operation exception */
-#define FP_X_DZ FE_DIVBYZERO /* divide-by-zero exception */
-#define FP_X_OFL FE_OVERFLOW /* overflow exception */
-#define FP_X_UFL FE_UNDERFLOW /* underflow exception */
-#define FP_X_IMP FE_INEXACT /* imprecise (prec. loss; "inexact") */
-
-/* Rounding modes */
-
-typedef enum {
- FP_RN=FE_TONEAREST, /* round to nearest representable number */
- FP_RP=FE_UPWARD, /* round toward positive infinity */
- FP_RM=FE_DOWNWARD, /* round toward negative infinity */
- FP_RZ=FE_TOWARDZERO /* round to zero (truncate) */
-} fp_rnd;
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE floating-point types.
--------------------------------------------------------------------------------
-*/
-typedef unsigned int float32;
-typedef unsigned long long float64;
-#ifdef FLOATX80
-typedef struct {
- unsigned short high;
- unsigned long long low;
-} floatx80;
-#endif
-#ifdef FLOAT128
-typedef struct {
- unsigned long long high, low;
-} float128;
-#endif
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE floating-point underflow tininess-detection mode.
--------------------------------------------------------------------------------
-*/
-#ifndef SOFTFLOAT_FOR_GCC
-extern int float_detect_tininess;
-#endif
-enum {
- float_tininess_after_rounding = 0,
- float_tininess_before_rounding = 1
-};
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE floating-point rounding mode.
--------------------------------------------------------------------------------
-*/
-extern fp_rnd float_rounding_mode;
-#define float_round_nearest_even FP_RN
-#define float_round_to_zero FP_RZ
-#define float_round_down FP_RM
-#define float_round_up FP_RP
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE floating-point exception flags.
--------------------------------------------------------------------------------
-*/
-extern fp_except float_exception_flags;
-extern fp_except float_exception_mask;
-enum {
- float_flag_inexact = FP_X_IMP,
- float_flag_underflow = FP_X_UFL,
- float_flag_overflow = FP_X_OFL,
- float_flag_divbyzero = FP_X_DZ,
- float_flag_invalid = FP_X_INV
-};
-
-/*
--------------------------------------------------------------------------------
-Routine to raise any or all of the software IEC/IEEE floating-point
-exception flags.
--------------------------------------------------------------------------------
-*/
-void float_raise( fp_except );
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE integer-to-floating-point conversion routines.
--------------------------------------------------------------------------------
-*/
-float32 int32_to_float32( int32 );
-float32 uint32_to_float32( uint32 );
-float64 int32_to_float64( int32 );
-float64 uint32_to_float64( uint32 );
-#ifdef FLOATX80
-floatx80 int32_to_floatx80( int32 );
-floatx80 uint32_to_floatx80( uint32 );
-#endif
-#ifdef FLOAT128
-float128 int32_to_float128( int32 );
-float128 uint32_to_float128( uint32 );
-#endif
-#ifndef SOFTFLOAT_FOR_GCC /* __floatdi?f is in libgcc2.c */
-float32 int64_to_float32( long long );
-float64 int64_to_float64( long long );
-#ifdef FLOATX80
-floatx80 int64_to_floatx80( long long );
-#endif
-#ifdef FLOAT128
-float128 int64_to_float128( long long );
-#endif
-#endif
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE single-precision conversion routines.
--------------------------------------------------------------------------------
-*/
-int float32_to_int32( float32 );
-int float32_to_int32_round_to_zero( float32 );
-#if defined(SOFTFLOAT_FOR_GCC) && defined(SOFTFLOAT_NEED_FIXUNS)
-unsigned int float32_to_uint32_round_to_zero( float32 );
-#endif
-#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */
-long long float32_to_int64( float32 );
-long long float32_to_int64_round_to_zero( float32 );
-#endif
-float64 float32_to_float64( float32 );
-#ifdef FLOATX80
-floatx80 float32_to_floatx80( float32 );
-#endif
-#ifdef FLOAT128
-float128 float32_to_float128( float32 );
-#endif
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE single-precision operations.
--------------------------------------------------------------------------------
-*/
-float32 float32_round_to_int( float32 );
-float32 float32_add( float32, float32 );
-float32 float32_sub( float32, float32 );
-float32 float32_mul( float32, float32 );
-float32 float32_div( float32, float32 );
-float32 float32_rem( float32, float32 );
-float32 float32_sqrt( float32 );
-int float32_eq( float32, float32 );
-int float32_le( float32, float32 );
-int float32_lt( float32, float32 );
-int float32_eq_signaling( float32, float32 );
-int float32_le_quiet( float32, float32 );
-int float32_lt_quiet( float32, float32 );
-#ifndef SOFTFLOAT_FOR_GCC
-int float32_is_signaling_nan( float32 );
-#endif
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE double-precision conversion routines.
--------------------------------------------------------------------------------
-*/
-int float64_to_int32( float64 );
-int float64_to_int32_round_to_zero( float64 );
-#if defined(SOFTFLOAT_FOR_GCC) && defined(SOFTFLOAT_NEED_FIXUNS)
-unsigned int float64_to_uint32_round_to_zero( float64 );
-#endif
-#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */
-long long float64_to_int64( float64 );
-long long float64_to_int64_round_to_zero( float64 );
-#endif
-float32 float64_to_float32( float64 );
-#ifdef FLOATX80
-floatx80 float64_to_floatx80( float64 );
-#endif
-#ifdef FLOAT128
-float128 float64_to_float128( float64 );
-#endif
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE double-precision operations.
--------------------------------------------------------------------------------
-*/
-float64 float64_round_to_int( float64 );
-float64 float64_add( float64, float64 );
-float64 float64_sub( float64, float64 );
-float64 float64_mul( float64, float64 );
-float64 float64_div( float64, float64 );
-float64 float64_rem( float64, float64 );
-float64 float64_sqrt( float64 );
-int float64_eq( float64, float64 );
-int float64_le( float64, float64 );
-int float64_lt( float64, float64 );
-int float64_eq_signaling( float64, float64 );
-int float64_le_quiet( float64, float64 );
-int float64_lt_quiet( float64, float64 );
-#ifndef SOFTFLOAT_FOR_GCC
-int float64_is_signaling_nan( float64 );
-#endif
-
-#ifdef FLOATX80
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE extended double-precision conversion routines.
--------------------------------------------------------------------------------
-*/
-int floatx80_to_int32( floatx80 );
-int floatx80_to_int32_round_to_zero( floatx80 );
-long long floatx80_to_int64( floatx80 );
-long long floatx80_to_int64_round_to_zero( floatx80 );
-float32 floatx80_to_float32( floatx80 );
-float64 floatx80_to_float64( floatx80 );
-#ifdef FLOAT128
-float128 floatx80_to_float128( floatx80 );
-#endif
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE extended double-precision rounding precision. Valid
-values are 32, 64, and 80.
--------------------------------------------------------------------------------
-*/
-extern int floatx80_rounding_precision;
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE extended double-precision operations.
--------------------------------------------------------------------------------
-*/
-floatx80 floatx80_round_to_int( floatx80 );
-floatx80 floatx80_add( floatx80, floatx80 );
-floatx80 floatx80_sub( floatx80, floatx80 );
-floatx80 floatx80_mul( floatx80, floatx80 );
-floatx80 floatx80_div( floatx80, floatx80 );
-floatx80 floatx80_rem( floatx80, floatx80 );
-floatx80 floatx80_sqrt( floatx80 );
-int floatx80_eq( floatx80, floatx80 );
-int floatx80_le( floatx80, floatx80 );
-int floatx80_lt( floatx80, floatx80 );
-int floatx80_eq_signaling( floatx80, floatx80 );
-int floatx80_le_quiet( floatx80, floatx80 );
-int floatx80_lt_quiet( floatx80, floatx80 );
-int floatx80_is_signaling_nan( floatx80 );
-
-#endif
-
-#ifdef FLOAT128
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE quadruple-precision conversion routines.
--------------------------------------------------------------------------------
-*/
-int float128_to_int32( float128 );
-int float128_to_int32_round_to_zero( float128 );
-long long float128_to_int64( float128 );
-long long float128_to_int64_round_to_zero( float128 );
-float32 float128_to_float32( float128 );
-float64 float128_to_float64( float128 );
-#ifdef FLOATX80
-floatx80 float128_to_floatx80( float128 );
-#endif
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE quadruple-precision operations.
--------------------------------------------------------------------------------
-*/
-float128 float128_round_to_int( float128 );
-float128 float128_add( float128, float128 );
-float128 float128_sub( float128, float128 );
-float128 float128_mul( float128, float128 );
-float128 float128_div( float128, float128 );
-float128 float128_rem( float128, float128 );
-float128 float128_sqrt( float128 );
-int float128_eq( float128, float128 );
-int float128_le( float128, float128 );
-int float128_lt( float128, float128 );
-int float128_eq_signaling( float128, float128 );
-int float128_le_quiet( float128, float128 );
-int float128_lt_quiet( float128, float128 );
-int float128_is_signaling_nan( float128 );
-
-#endif
diff --git a/ArmPkg/Library/ArmSoftFloatLib/arm-gcc.h b/ArmPkg/Library/ArmSoftFloatLib/arm-gcc.h
deleted file mode 100644
index 67962518e013..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/arm-gcc.h
+++ /dev/null
@@ -1,108 +0,0 @@
-/** @file
-
- Copyright (c) 2014, ARM Limited. All rights reserved.
-
- SPDX-License-Identifier: BSD-2-Clause-Patent
-
-**/
-
-/* $NetBSD: arm-gcc.h,v 1.4 2013/01/26 07:08:14 matt Exp $ */
-
-/*
--------------------------------------------------------------------------------
-One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
--------------------------------------------------------------------------------
-*/
-#ifdef __ARMEB__
-#define BIGENDIAN
-#else
-#define LITTLEENDIAN
-#endif
-
-/*
--------------------------------------------------------------------------------
-The macro `BITS64' can be defined to indicate that 64-bit integer types are
-supported by the compiler.
--------------------------------------------------------------------------------
-*/
-#define BITS64
-
-/*
--------------------------------------------------------------------------------
-Each of the following `typedef's defines the most convenient type that holds
-integers of at least as many bits as specified. For example, `uint8' should
-be the most convenient type that can hold unsigned integers of as many as
-8 bits. The `flag' type must be able to hold either a 0 or 1. For most
-implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
-to the same as `int'.
--------------------------------------------------------------------------------
-*/
-typedef int flag;
-typedef int uint8;
-typedef int int8;
-typedef int uint16;
-typedef int int16;
-typedef unsigned int uint32;
-typedef signed int int32;
-#ifdef BITS64
-typedef unsigned long long int uint64;
-typedef signed long long int int64;
-#endif
-
-/*
--------------------------------------------------------------------------------
-Each of the following `typedef's defines a type that holds integers
-of _exactly_ the number of bits specified. For instance, for most
-implementation of C, `bits16' and `sbits16' should be `typedef'ed to
-`unsigned short int' and `signed short int' (or `short int'), respectively.
--------------------------------------------------------------------------------
-*/
-typedef unsigned char bits8;
-typedef signed char sbits8;
-typedef unsigned short int bits16;
-typedef signed short int sbits16;
-typedef unsigned int bits32;
-typedef signed int sbits32;
-#ifdef BITS64
-typedef unsigned long long int bits64;
-typedef signed long long int sbits64;
-#endif
-
-#ifdef BITS64
-/*
--------------------------------------------------------------------------------
-The `LIT64' macro takes as its argument a textual integer literal and
-if necessary ``marks'' the literal as having a 64-bit integer type.
-For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
-appended with the letters `LL' standing for `long long', which is `gcc's
-name for the 64-bit integer type. Some compilers may allow `LIT64' to be
-defined as the identity macro: `#define LIT64( a ) a'.
--------------------------------------------------------------------------------
-*/
-#define LIT64( a ) a##ULL
-#endif
-
-/*
--------------------------------------------------------------------------------
-The macro `INLINE' can be used before functions that should be inlined. If
-a compiler does not support explicit inlining, this macro should be defined
-to be `static'.
--------------------------------------------------------------------------------
-*/
-#define INLINE static inline
-
-/*
--------------------------------------------------------------------------------
-The ARM FPA is odd in that it stores doubles high-order word first, no matter
-what the endianness of the CPU. VFP is sane.
--------------------------------------------------------------------------------
-*/
-#if defined(SOFTFLOAT_FOR_GCC)
-#if defined(__VFP_FP__) || defined(__ARMEB__)
-#define FLOAT64_DEMANGLE(a) (a)
-#define FLOAT64_MANGLE(a) (a)
-#else
-#define FLOAT64_DEMANGLE(a) (((a) << 32) | ((a) >> 32))
-#define FLOAT64_MANGLE(a) FLOAT64_DEMANGLE(a)
-#endif
-#endif
diff --git a/ArmPkg/Library/ArmSoftFloatLib/bits32/softfloat-macros b/ArmPkg/Library/ArmSoftFloatLib/bits32/softfloat-macros
deleted file mode 100644
index 8e1f2d8b9abe..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/bits32/softfloat-macros
+++ /dev/null
@@ -1,648 +0,0 @@
-
-/*
-===============================================================================
-
-This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2a.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
-has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
-TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
-PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
-AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) they include prominent notice that the work is derivative, and (2) they
-include prominent notice akin to these four paragraphs for those parts of
-this code that are retained.
-
-===============================================================================
-*/
-
-/*
--------------------------------------------------------------------------------
-Shifts `a' right by the number of bits given in `count'. If any nonzero
-bits are shifted off, they are ``jammed'' into the least significant bit of
-the result by setting the least significant bit to 1. The value of `count'
-can be arbitrarily large; in particular, if `count' is greater than 32, the
-result will be either 0 or 1, depending on whether `a' is zero or nonzero.
-The result is stored in the location pointed to by `zPtr'.
--------------------------------------------------------------------------------
-*/
-INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
-{
- bits32 z;
-
- if ( count == 0 ) {
- z = a;
- }
- else if ( count < 32 ) {
- z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
- }
- else {
- z = ( a != 0 );
- }
- *zPtr = z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
-number of bits given in `count'. Any bits shifted off are lost. The value
-of `count' can be arbitrarily large; in particular, if `count' is greater
-than 64, the result will be 0. The result is broken into two 32-bit pieces
-which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
--------------------------------------------------------------------------------
-*/
-INLINE void
- shift64Right(
- bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
-{
- bits32 z0, z1;
- int8 negCount = ( - count ) & 31;
-
- if ( count == 0 ) {
- z1 = a1;
- z0 = a0;
- }
- else if ( count < 32 ) {
- z1 = ( a0<<negCount ) | ( a1>>count );
- z0 = a0>>count;
- }
- else {
- z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0;
- z0 = 0;
- }
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
-number of bits given in `count'. If any nonzero bits are shifted off, they
-are ``jammed'' into the least significant bit of the result by setting the
-least significant bit to 1. The value of `count' can be arbitrarily large;
-in particular, if `count' is greater than 64, the result will be either 0
-or 1, depending on whether the concatenation of `a0' and `a1' is zero or
-nonzero. The result is broken into two 32-bit pieces which are stored at
-the locations pointed to by `z0Ptr' and `z1Ptr'.
--------------------------------------------------------------------------------
-*/
-INLINE void
- shift64RightJamming(
- bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
-{
- bits32 z0, z1;
- int8 negCount = ( - count ) & 31;
-
- if ( count == 0 ) {
- z1 = a1;
- z0 = a0;
- }
- else if ( count < 32 ) {
- z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
- z0 = a0>>count;
- }
- else {
- if ( count == 32 ) {
- z1 = a0 | ( a1 != 0 );
- }
- else if ( count < 64 ) {
- z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
- }
- else {
- z1 = ( ( a0 | a1 ) != 0 );
- }
- z0 = 0;
- }
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
-by 32 _plus_ the number of bits given in `count'. The shifted result is
-at most 64 nonzero bits; these are broken into two 32-bit pieces which are
-stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
-off form a third 32-bit result as follows: The _last_ bit shifted off is
-the most-significant bit of the extra result, and the other 31 bits of the
-extra result are all zero if and only if _all_but_the_last_ bits shifted off
-were all zero. This extra result is stored in the location pointed to by
-`z2Ptr'. The value of `count' can be arbitrarily large.
- (This routine makes more sense if `a0', `a1', and `a2' are considered
-to form a fixed-point value with binary point between `a1' and `a2'. This
-fixed-point value is shifted right by the number of bits given in `count',
-and the integer part of the result is returned at the locations pointed to
-by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
-corrupted as described above, and is returned at the location pointed to by
-`z2Ptr'.)
--------------------------------------------------------------------------------
-*/
-INLINE void
- shift64ExtraRightJamming(
- bits32 a0,
- bits32 a1,
- bits32 a2,
- int16 count,
- bits32 *z0Ptr,
- bits32 *z1Ptr,
- bits32 *z2Ptr
- )
-{
- bits32 z0, z1, z2;
- int8 negCount = ( - count ) & 31;
-
- if ( count == 0 ) {
- z2 = a2;
- z1 = a1;
- z0 = a0;
- }
- else {
- if ( count < 32 ) {
- z2 = a1<<negCount;
- z1 = ( a0<<negCount ) | ( a1>>count );
- z0 = a0>>count;
- }
- else {
- if ( count == 32 ) {
- z2 = a1;
- z1 = a0;
- }
- else {
- a2 |= a1;
- if ( count < 64 ) {
- z2 = a0<<negCount;
- z1 = a0>>( count & 31 );
- }
- else {
- z2 = ( count == 64 ) ? a0 : ( a0 != 0 );
- z1 = 0;
- }
- }
- z0 = 0;
- }
- z2 |= ( a2 != 0 );
- }
- *z2Ptr = z2;
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
-number of bits given in `count'. Any bits shifted off are lost. The value
-of `count' must be less than 32. The result is broken into two 32-bit
-pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
--------------------------------------------------------------------------------
-*/
-INLINE void
- shortShift64Left(
- bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
-{
-
- *z1Ptr = a1<<count;
- *z0Ptr =
- ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 31 ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left
-by the number of bits given in `count'. Any bits shifted off are lost.
-The value of `count' must be less than 32. The result is broken into three
-32-bit pieces which are stored at the locations pointed to by `z0Ptr',
-`z1Ptr', and `z2Ptr'.
--------------------------------------------------------------------------------
-*/
-INLINE void
- shortShift96Left(
- bits32 a0,
- bits32 a1,
- bits32 a2,
- int16 count,
- bits32 *z0Ptr,
- bits32 *z1Ptr,
- bits32 *z2Ptr
- )
-{
- bits32 z0, z1, z2;
- int8 negCount;
-
- z2 = a2<<count;
- z1 = a1<<count;
- z0 = a0<<count;
- if ( 0 < count ) {
- negCount = ( ( - count ) & 31 );
- z1 |= a2>>negCount;
- z0 |= a1>>negCount;
- }
- *z2Ptr = z2;
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
-value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
-any carry out is lost. The result is broken into two 32-bit pieces which
-are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
--------------------------------------------------------------------------------
-*/
-INLINE void
- add64(
- bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
-{
- bits32 z1;
-
- z1 = a1 + b1;
- *z1Ptr = z1;
- *z0Ptr = a0 + b0 + ( z1 < a1 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
-96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
-modulo 2^96, so any carry out is lost. The result is broken into three
-32-bit pieces which are stored at the locations pointed to by `z0Ptr',
-`z1Ptr', and `z2Ptr'.
--------------------------------------------------------------------------------
-*/
-INLINE void
- add96(
- bits32 a0,
- bits32 a1,
- bits32 a2,
- bits32 b0,
- bits32 b1,
- bits32 b2,
- bits32 *z0Ptr,
- bits32 *z1Ptr,
- bits32 *z2Ptr
- )
-{
- bits32 z0, z1, z2;
- int8 carry0, carry1;
-
- z2 = a2 + b2;
- carry1 = ( z2 < a2 );
- z1 = a1 + b1;
- carry0 = ( z1 < a1 );
- z0 = a0 + b0;
- z1 += carry1;
- z0 += ( z1 < (bits32)carry1 );
- z0 += carry0;
- *z2Ptr = z2;
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
-64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
-2^64, so any borrow out (carry out) is lost. The result is broken into two
-32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
-`z1Ptr'.
--------------------------------------------------------------------------------
-*/
-INLINE void
- sub64(
- bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
-{
-
- *z1Ptr = a1 - b1;
- *z0Ptr = a0 - b0 - ( a1 < b1 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
-the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction
-is modulo 2^96, so any borrow out (carry out) is lost. The result is broken
-into three 32-bit pieces which are stored at the locations pointed to by
-`z0Ptr', `z1Ptr', and `z2Ptr'.
--------------------------------------------------------------------------------
-*/
-INLINE void
- sub96(
- bits32 a0,
- bits32 a1,
- bits32 a2,
- bits32 b0,
- bits32 b1,
- bits32 b2,
- bits32 *z0Ptr,
- bits32 *z1Ptr,
- bits32 *z2Ptr
- )
-{
- bits32 z0, z1, z2;
- int8 borrow0, borrow1;
-
- z2 = a2 - b2;
- borrow1 = ( a2 < b2 );
- z1 = a1 - b1;
- borrow0 = ( a1 < b1 );
- z0 = a0 - b0;
- z0 -= ( z1 < (bits32)borrow1 );
- z1 -= borrow1;
- z0 -= borrow0;
- *z2Ptr = z2;
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Multiplies `a' by `b' to obtain a 64-bit product. The product is broken
-into two 32-bit pieces which are stored at the locations pointed to by
-`z0Ptr' and `z1Ptr'.
--------------------------------------------------------------------------------
-*/
-INLINE void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr )
-{
- bits16 aHigh, aLow, bHigh, bLow;
- bits32 z0, zMiddleA, zMiddleB, z1;
-
- aLow = a;
- aHigh = a>>16;
- bLow = b;
- bHigh = b>>16;
- z1 = ( (bits32) aLow ) * bLow;
- zMiddleA = ( (bits32) aLow ) * bHigh;
- zMiddleB = ( (bits32) aHigh ) * bLow;
- z0 = ( (bits32) aHigh ) * bHigh;
- zMiddleA += zMiddleB;
- z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 );
- zMiddleA <<= 16;
- z1 += zMiddleA;
- z0 += ( z1 < zMiddleA );
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b'
-to obtain a 96-bit product. The product is broken into three 32-bit pieces
-which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
-`z2Ptr'.
--------------------------------------------------------------------------------
-*/
-INLINE void
- mul64By32To96(
- bits32 a0,
- bits32 a1,
- bits32 b,
- bits32 *z0Ptr,
- bits32 *z1Ptr,
- bits32 *z2Ptr
- )
-{
- bits32 z0, z1, z2, more1;
-
- mul32To64( a1, b, &z1, &z2 );
- mul32To64( a0, b, &z0, &more1 );
- add64( z0, more1, 0, z1, &z0, &z1 );
- *z2Ptr = z2;
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
-64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
-product. The product is broken into four 32-bit pieces which are stored at
-the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
--------------------------------------------------------------------------------
-*/
-INLINE void
- mul64To128(
- bits32 a0,
- bits32 a1,
- bits32 b0,
- bits32 b1,
- bits32 *z0Ptr,
- bits32 *z1Ptr,
- bits32 *z2Ptr,
- bits32 *z3Ptr
- )
-{
- bits32 z0, z1, z2, z3;
- bits32 more1, more2;
-
- mul32To64( a1, b1, &z2, &z3 );
- mul32To64( a1, b0, &z1, &more2 );
- add64( z1, more2, 0, z2, &z1, &z2 );
- mul32To64( a0, b0, &z0, &more1 );
- add64( z0, more1, 0, z1, &z0, &z1 );
- mul32To64( a0, b1, &more1, &more2 );
- add64( more1, more2, 0, z2, &more1, &z2 );
- add64( z0, z1, 0, more1, &z0, &z1 );
- *z3Ptr = z3;
- *z2Ptr = z2;
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns an approximation to the 32-bit integer quotient obtained by dividing
-`b' into the 64-bit value formed by concatenating `a0' and `a1'. The
-divisor `b' must be at least 2^31. If q is the exact quotient truncated
-toward zero, the approximation returned lies between q and q + 2 inclusive.
-If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
-unsigned integer is returned.
--------------------------------------------------------------------------------
-*/
-static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b )
-{
- bits32 b0, b1;
- bits32 rem0, rem1, term0, term1;
- bits32 z;
-
- if ( b <= a0 ) return 0xFFFFFFFF;
- b0 = b>>16;
- z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16;
- mul32To64( b, z, &term0, &term1 );
- sub64( a0, a1, term0, term1, &rem0, &rem1 );
- while ( ( (sbits32) rem0 ) < 0 ) {
- z -= 0x10000;
- b1 = b<<16;
- add64( rem0, rem1, b0, b1, &rem0, &rem1 );
- }
- rem0 = ( rem0<<16 ) | ( rem1>>16 );
- z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0;
- return z;
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Returns an approximation to the square root of the 32-bit significand given
-by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
-`aExp' (the least significant bit) is 1, the integer returned approximates
-2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
-is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
-case, the approximation returned lies strictly within +/-2 of the exact
-value.
--------------------------------------------------------------------------------
-*/
-static bits32 estimateSqrt32( int16 aExp, bits32 a )
-{
- static const bits16 sqrtOddAdjustments[] = {
- 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
- 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
- };
- static const bits16 sqrtEvenAdjustments[] = {
- 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
- 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
- };
- int8 index;
- bits32 z;
-
- index = ( a>>27 ) & 15;
- if ( aExp & 1 ) {
- z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
- z = ( ( a / z )<<14 ) + ( z<<15 );
- a >>= 1;
- }
- else {
- z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
- z = a / z + z;
- z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
- if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
- }
- return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 );
-
-}
-#endif
-
-/*
--------------------------------------------------------------------------------
-Returns the number of leading 0 bits before the most-significant 1 bit of
-`a'. If `a' is zero, 32 is returned.
--------------------------------------------------------------------------------
-*/
-static int8 countLeadingZeros32( bits32 a )
-{
- static const int8 countLeadingZerosHigh[] = {
- 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
- };
- int8 shiftCount;
-
- shiftCount = 0;
- if ( a < 0x10000 ) {
- shiftCount += 16;
- a <<= 16;
- }
- if ( a < 0x1000000 ) {
- shiftCount += 8;
- a <<= 8;
- }
- shiftCount += countLeadingZerosHigh[ a>>24 ];
- return shiftCount;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is
-equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
-returns 0.
--------------------------------------------------------------------------------
-*/
-INLINE flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
-{
-
- return ( a0 == b0 ) && ( a1 == b1 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
-than or equal to the 64-bit value formed by concatenating `b0' and `b1'.
-Otherwise, returns 0.
--------------------------------------------------------------------------------
-*/
-INLINE flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
-{
-
- return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
-than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
-returns 0.
--------------------------------------------------------------------------------
-*/
-INLINE flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
-{
-
- return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not
-equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
-returns 0.
--------------------------------------------------------------------------------
-*/
-INLINE flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
-{
-
- return ( a0 != b0 ) || ( a1 != b1 );
-
-}
-
diff --git a/ArmPkg/Library/ArmSoftFloatLib/bits32/softfloat.c b/ArmPkg/Library/ArmSoftFloatLib/bits32/softfloat.c
deleted file mode 100644
index 759b8a0077e1..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/bits32/softfloat.c
+++ /dev/null
@@ -1,2354 +0,0 @@
-/* $NetBSD: softfloat.c,v 1.3 2013/01/10 08:16:11 matt Exp $ */
-
-/*
- * This version hacked for use with gcc -msoft-float by bjh21.
- * (Mostly a case of #ifdefing out things GCC doesn't need or provides
- * itself).
- */
-
-/*
- * Things you may want to define:
- *
- * SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with
- * -msoft-float) to work. Include "softfloat-for-gcc.h" to get them
- * properly renamed.
- */
-
-/*
- * This differs from the standard bits32/softfloat.c in that float64
- * is defined to be a 64-bit integer rather than a structure. The
- * structure is float64s, with translation between the two going via
- * float64u.
- */
-
-/*
-===============================================================================
-
-This C source file is part of the SoftFloat IEC/IEEE Floating-Point
-Arithmetic Package, Release 2a.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
-has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
-TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
-PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
-AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) they include prominent notice that the work is derivative, and (2) they
-include prominent notice akin to these four paragraphs for those parts of
-this code that are retained.
-
-===============================================================================
-*/
-
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: softfloat.c,v 1.3 2013/01/10 08:16:11 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-#ifdef SOFTFLOAT_FOR_GCC
-#include "softfloat-for-gcc.h"
-#endif
-
-#include "milieu.h"
-#include "softfloat.h"
-
-/*
- * Conversions between floats as stored in memory and floats as
- * SoftFloat uses them
- */
-#ifndef FLOAT64_DEMANGLE
-#define FLOAT64_DEMANGLE(a) (a)
-#endif
-#ifndef FLOAT64_MANGLE
-#define FLOAT64_MANGLE(a) (a)
-#endif
-
-/*
--------------------------------------------------------------------------------
-Floating-point rounding mode and exception flags.
--------------------------------------------------------------------------------
-*/
-#ifndef set_float_rounding_mode
-fp_rnd float_rounding_mode = float_round_nearest_even;
-fp_except float_exception_flags = 0;
-#endif
-#ifndef set_float_exception_inexact_flag
-#define set_float_exception_inexact_flag() \
- ((void)(float_exception_flags |= float_flag_inexact))
-#endif
-
-/*
--------------------------------------------------------------------------------
-Primitive arithmetic functions, including multi-word arithmetic, and
-division and square root approximations. (Can be specialized to target if
-desired.)
--------------------------------------------------------------------------------
-*/
-#include "softfloat-macros"
-
-/*
--------------------------------------------------------------------------------
-Functions and definitions to determine: (1) whether tininess for underflow
-is detected before or after rounding by default, (2) what (if anything)
-happens when exceptions are raised, (3) how signaling NaNs are distinguished
-from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs
-are propagated from function inputs to output. These details are target-
-specific.
--------------------------------------------------------------------------------
-*/
-#include "softfloat-specialize"
-
-/*
--------------------------------------------------------------------------------
-Returns the fraction bits of the single-precision floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE bits32 extractFloat32Frac( float32 a )
-{
-
- return a & 0x007FFFFF;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the exponent bits of the single-precision floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE int16 extractFloat32Exp( float32 a )
-{
-
- return ( a>>23 ) & 0xFF;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the sign bit of the single-precision floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE flag extractFloat32Sign( float32 a )
-{
-
- return a>>31;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Normalizes the subnormal single-precision floating-point value represented
-by the denormalized significand `aSig'. The normalized exponent and
-significand are stored at the locations pointed to by `zExpPtr' and
-`zSigPtr', respectively.
--------------------------------------------------------------------------------
-*/
-static void
- normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
-{
- int8 shiftCount;
-
- shiftCount = countLeadingZeros32( aSig ) - 8;
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
-single-precision floating-point value, returning the result. After being
-shifted into the proper positions, the three fields are simply added
-together to form the result. This means that any integer portion of `zSig'
-will be added into the exponent. Since a properly normalized significand
-will have an integer portion equal to 1, the `zExp' input should be 1 less
-than the desired result exponent whenever `zSig' is a complete, normalized
-significand.
--------------------------------------------------------------------------------
-*/
-INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
-{
-
- return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-and significand `zSig', and returns the proper single-precision floating-
-point value corresponding to the abstract input. Ordinarily, the abstract
-value is simply rounded and packed into the single-precision format, with
-the inexact exception raised if the abstract input cannot be represented
-exactly. However, if the abstract value is too large, the overflow and
-inexact exceptions are raised and an infinity or maximal finite value is
-returned. If the abstract value is too small, the input value is rounded to
-a subnormal number, and the underflow and inexact exceptions are raised if
-the abstract input cannot be represented exactly as a subnormal single-
-precision floating-point number.
- The input significand `zSig' has its binary point between bits 30
-and 29, which is 7 bits to the left of the usual location. This shifted
-significand must be normalized or smaller. If `zSig' is not normalized,
-`zExp' must be 0; in that case, the result returned is a subnormal number,
-and it must not require rounding. In the usual case that `zSig' is
-normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
-The handling of underflow and overflow follows the IEC/IEEE Standard for
-Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
-{
- int8 roundingMode;
- flag roundNearestEven;
- int8 roundIncrement, roundBits;
- flag isTiny;
-
- roundingMode = float_rounding_mode;
- roundNearestEven = roundingMode == float_round_nearest_even;
- roundIncrement = 0x40;
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- roundIncrement = 0;
- }
- else {
- roundIncrement = 0x7F;
- if ( zSign ) {
- if ( roundingMode == float_round_up ) roundIncrement = 0;
- }
- else {
- if ( roundingMode == float_round_down ) roundIncrement = 0;
- }
- }
- }
- roundBits = zSig & 0x7F;
- if ( 0xFD <= (bits16) zExp ) {
- if ( ( 0xFD < zExp )
- || ( ( zExp == 0xFD )
- && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
- ) {
- float_raise( float_flag_overflow | float_flag_inexact );
- return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
- }
- if ( zExp < 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < -1 )
- || ( zSig + roundIncrement < (uint32)0x80000000 );
- shift32RightJamming( zSig, - zExp, &zSig );
- zExp = 0;
- roundBits = zSig & 0x7F;
- if ( isTiny && roundBits ) float_raise( float_flag_underflow );
- }
- }
- if ( roundBits ) set_float_exception_inexact_flag();
- zSig = ( zSig + roundIncrement )>>7;
- zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
- if ( zSig == 0 ) zExp = 0;
- return packFloat32( zSign, zExp, zSig );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-and significand `zSig', and returns the proper single-precision floating-
-point value corresponding to the abstract input. This routine is just like
-`roundAndPackFloat32' except that `zSig' does not have to be normalized.
-Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
-floating-point exponent.
--------------------------------------------------------------------------------
-*/
-static float32
- normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
-{
- int8 shiftCount;
-
- shiftCount = countLeadingZeros32( zSig ) - 1;
- return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the least-significant 32 fraction bits of the double-precision
-floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE bits32 extractFloat64Frac1( float64 a )
-{
-
- return (bits32)(FLOAT64_DEMANGLE(a) & LIT64(0x00000000FFFFFFFF));
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the most-significant 20 fraction bits of the double-precision
-floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE bits32 extractFloat64Frac0( float64 a )
-{
-
- return (bits32)((FLOAT64_DEMANGLE(a) >> 32) & 0x000FFFFF);
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the exponent bits of the double-precision floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE int16 extractFloat64Exp( float64 a )
-{
-
- return (int16)((FLOAT64_DEMANGLE(a) >> 52) & 0x7FF);
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the sign bit of the double-precision floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE flag extractFloat64Sign( float64 a )
-{
-
- return (flag)(FLOAT64_DEMANGLE(a) >> 63);
-
-}
-
-/*
--------------------------------------------------------------------------------
-Normalizes the subnormal double-precision floating-point value represented
-by the denormalized significand formed by the concatenation of `aSig0' and
-`aSig1'. The normalized exponent is stored at the location pointed to by
-`zExpPtr'. The most significant 21 bits of the normalized significand are
-stored at the location pointed to by `zSig0Ptr', and the least significant
-32 bits of the normalized significand are stored at the location pointed to
-by `zSig1Ptr'.
--------------------------------------------------------------------------------
-*/
-static void
- normalizeFloat64Subnormal(
- bits32 aSig0,
- bits32 aSig1,
- int16 *zExpPtr,
- bits32 *zSig0Ptr,
- bits32 *zSig1Ptr
- )
-{
- int8 shiftCount;
-
- if ( aSig0 == 0 ) {
- shiftCount = countLeadingZeros32( aSig1 ) - 11;
- if ( shiftCount < 0 ) {
- *zSig0Ptr = aSig1>>( - shiftCount );
- *zSig1Ptr = aSig1<<( shiftCount & 31 );
- }
- else {
- *zSig0Ptr = aSig1<<shiftCount;
- *zSig1Ptr = 0;
- }
- *zExpPtr = - shiftCount - 31;
- }
- else {
- shiftCount = countLeadingZeros32( aSig0 ) - 11;
- shortShift64Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
- *zExpPtr = 1 - shiftCount;
- }
-
-}
-
-/*
--------------------------------------------------------------------------------
-Packs the sign `zSign', the exponent `zExp', and the significand formed by
-the concatenation of `zSig0' and `zSig1' into a double-precision floating-
-point value, returning the result. After being shifted into the proper
-positions, the three fields `zSign', `zExp', and `zSig0' are simply added
-together to form the most significant 32 bits of the result. This means
-that any integer portion of `zSig0' will be added into the exponent. Since
-a properly normalized significand will have an integer portion equal to 1,
-the `zExp' input should be 1 less than the desired result exponent whenever
-`zSig0' and `zSig1' concatenated form a complete, normalized significand.
--------------------------------------------------------------------------------
-*/
-INLINE float64
- packFloat64( flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )
-{
-
- return FLOAT64_MANGLE( ( ( (bits64) zSign )<<63 ) +
- ( ( (bits64) zExp )<<52 ) +
- ( ( (bits64) zSig0 )<<32 ) + zSig1 );
-
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-and extended significand formed by the concatenation of `zSig0', `zSig1',
-and `zSig2', and returns the proper double-precision floating-point value
-corresponding to the abstract input. Ordinarily, the abstract value is
-simply rounded and packed into the double-precision format, with the inexact
-exception raised if the abstract input cannot be represented exactly.
-However, if the abstract value is too large, the overflow and inexact
-exceptions are raised and an infinity or maximal finite value is returned.
-If the abstract value is too small, the input value is rounded to a
-subnormal number, and the underflow and inexact exceptions are raised if the
-abstract input cannot be represented exactly as a subnormal double-precision
-floating-point number.
- The input significand must be normalized or smaller. If the input
-significand is not normalized, `zExp' must be 0; in that case, the result
-returned is a subnormal number, and it must not require rounding. In the
-usual case that the input significand is normalized, `zExp' must be 1 less
-than the ``true'' floating-point exponent. The handling of underflow and
-overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-static float64
- roundAndPackFloat64(
- flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1, bits32 zSig2 )
-{
- int8 roundingMode;
- flag roundNearestEven, increment, isTiny;
-
- roundingMode = float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- increment = ( (sbits32) zSig2 < 0 );
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- increment = 0;
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig2;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig2;
- }
- }
- }
- if ( 0x7FD <= (bits16) zExp ) {
- if ( ( 0x7FD < zExp )
- || ( ( zExp == 0x7FD )
- && eq64( 0x001FFFFF, 0xFFFFFFFF, zSig0, zSig1 )
- && increment
- )
- ) {
- float_raise( float_flag_overflow | float_flag_inexact );
- if ( ( roundingMode == float_round_to_zero )
- || ( zSign && ( roundingMode == float_round_up ) )
- || ( ! zSign && ( roundingMode == float_round_down ) )
- ) {
- return packFloat64( zSign, 0x7FE, 0x000FFFFF, 0xFFFFFFFF );
- }
- return packFloat64( zSign, 0x7FF, 0, 0 );
- }
- if ( zExp < 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < -1 )
- || ! increment
- || lt64( zSig0, zSig1, 0x001FFFFF, 0xFFFFFFFF );
- shift64ExtraRightJamming(
- zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
- zExp = 0;
- if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
- if ( roundNearestEven ) {
- increment = ( (sbits32) zSig2 < 0 );
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig2;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig2;
- }
- }
- }
- }
- if ( zSig2 ) set_float_exception_inexact_flag();
- if ( increment ) {
- add64( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
- zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
- }
- else {
- if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
- }
- return packFloat64( zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-and significand formed by the concatenation of `zSig0' and `zSig1', and
-returns the proper double-precision floating-point value corresponding
-to the abstract input. This routine is just like `roundAndPackFloat64'
-except that the input significand has fewer bits and does not have to be
-normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
-point exponent.
--------------------------------------------------------------------------------
-*/
-static float64
- normalizeRoundAndPackFloat64(
- flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )
-{
- int8 shiftCount;
- bits32 zSig2;
-
- if ( zSig0 == 0 ) {
- zSig0 = zSig1;
- zSig1 = 0;
- zExp -= 32;
- }
- shiftCount = countLeadingZeros32( zSig0 ) - 11;
- if ( 0 <= shiftCount ) {
- zSig2 = 0;
- shortShift64Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- }
- else {
- shift64ExtraRightJamming(
- zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
- }
- zExp -= shiftCount;
- return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the 32-bit two's complement integer `a' to
-the single-precision floating-point format. The conversion is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 int32_to_float32( int32 a )
-{
- flag zSign;
-
- if ( a == 0 ) return 0;
- if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
- zSign = ( a < 0 );
- return normalizeRoundAndPackFloat32(zSign, 0x9C, (uint32)(zSign ? - a : a));
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the 32-bit two's complement integer `a' to
-the double-precision floating-point format. The conversion is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 int32_to_float64( int32 a )
-{
- flag zSign;
- bits32 absA;
- int8 shiftCount;
- bits32 zSig0, zSig1;
-
- if ( a == 0 ) return packFloat64( 0, 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) - 11;
- if ( 0 <= shiftCount ) {
- zSig0 = absA<<shiftCount;
- zSig1 = 0;
- }
- else {
- shift64Right( absA, 0, - shiftCount, &zSig0, &zSig1 );
- }
- return packFloat64( zSign, 0x412 - shiftCount, zSig0, zSig1 );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the single-precision floating-point value
-`a' to the 32-bit two's complement integer format. The conversion is
-performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic---which means in particular that the conversion is rounded
-according to the current rounding mode. If `a' is a NaN, the largest
-positive integer is returned. Otherwise, if the conversion overflows, the
-largest integer with the same sign as `a' is returned.
--------------------------------------------------------------------------------
-*/
-int32 float32_to_int32( float32 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig, aSigExtra;
- int32 z;
- int8 roundingMode;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x96;
- if ( 0 <= shiftCount ) {
- if ( 0x9E <= aExp ) {
- if ( a != 0xCF000000 ) {
- float_raise( float_flag_invalid );
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return 0x7FFFFFFF;
- }
- }
- return (sbits32) 0x80000000;
- }
- z = ( aSig | 0x00800000 )<<shiftCount;
- if ( aSign ) z = - z;
- }
- else {
- if ( aExp < 0x7E ) {
- aSigExtra = aExp | aSig;
- z = 0;
- }
- else {
- aSig |= 0x00800000;
- aSigExtra = aSig<<( shiftCount & 31 );
- z = aSig>>( - shiftCount );
- }
- if ( aSigExtra ) set_float_exception_inexact_flag();
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- if ( (sbits32) aSigExtra < 0 ) {
- ++z;
- if ( (bits32) ( aSigExtra<<1 ) == 0 ) z &= ~1;
- }
- if ( aSign ) z = - z;
- }
- else {
- aSigExtra = ( aSigExtra != 0 );
- if ( aSign ) {
- z += ( roundingMode == float_round_down ) & aSigExtra;
- z = - z;
- }
- else {
- z += ( roundingMode == float_round_up ) & aSigExtra;
- }
- }
- }
- return z;
-
-}
-#endif
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the single-precision floating-point value
-`a' to the 32-bit two's complement integer format. The conversion is
-performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic, except that the conversion is always rounded toward zero.
-If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-the conversion overflows, the largest integer with the same sign as `a' is
-returned.
--------------------------------------------------------------------------------
-*/
-int32 float32_to_int32_round_to_zero( float32 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig;
- int32 z;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x9E;
- if ( 0 <= shiftCount ) {
- if ( a != 0xCF000000 ) {
- float_raise( float_flag_invalid );
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
- }
- return (sbits32) 0x80000000;
- }
- else if ( aExp <= 0x7E ) {
- if ( aExp | aSig ) set_float_exception_inexact_flag();
- return 0;
- }
- aSig = ( aSig | 0x00800000 )<<8;
- z = aSig>>( - shiftCount );
- if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
- set_float_exception_inexact_flag();
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the single-precision floating-point value
-`a' to the double-precision floating-point format. The conversion is
-performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float32_to_float64( float32 a )
-{
- flag aSign;
- int16 aExp;
- bits32 aSig, zSig0, zSig1;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
- return packFloat64( aSign, 0x7FF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( aSign, 0, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- shift64Right( aSig, 0, 3, &zSig0, &zSig1 );
- return packFloat64( aSign, aExp + 0x380, zSig0, zSig1 );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Rounds the single-precision floating-point value `a' to an integer,
-and returns the result as a single-precision floating-point value. The
-operation is performed according to the IEC/IEEE Standard for Binary
-Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_round_to_int( float32 a )
-{
- flag aSign;
- int16 aExp;
- bits32 lastBitMask, roundBitsMask;
- int8 roundingMode;
- float32 z;
-
- aExp = extractFloat32Exp( a );
- if ( 0x96 <= aExp ) {
- if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
- return propagateFloat32NaN( a, a );
- }
- return a;
- }
- if ( aExp <= 0x7E ) {
- if ( (bits32) ( a<<1 ) == 0 ) return a;
- set_float_exception_inexact_flag();
- aSign = extractFloat32Sign( a );
- switch ( float_rounding_mode ) {
- case float_round_nearest_even:
- if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
- return packFloat32( aSign, 0x7F, 0 );
- }
- break;
- case float_round_to_zero:
- break;
- case float_round_down:
- return aSign ? 0xBF800000 : 0;
- case float_round_up:
- return aSign ? 0x80000000 : 0x3F800000;
- }
- return packFloat32( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x96 - aExp;
- roundBitsMask = lastBitMask - 1;
- z = a;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- z += lastBitMask>>1;
- if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
- z += roundBitsMask;
- }
- }
- z &= ~ roundBitsMask;
- if ( z != a ) set_float_exception_inexact_flag();
- return z;
-
-}
-#endif
-
-/*
--------------------------------------------------------------------------------
-Returns the result of adding the absolute values of the single-precision
-floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
-before being returned. `zSign' is ignored if the result is a NaN.
-The addition is performed according to the IEC/IEEE Standard for Binary
-Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )
-{
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig;
- int16 expDiff;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 6;
- bSig <<= 6;
- if ( 0 < expDiff ) {
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= 0x20000000;
- }
- shift32RightJamming( bSig, expDiff, &bSig );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= 0x20000000;
- }
- shift32RightJamming( aSig, - expDiff, &aSig );
- zExp = bExp;
- }
- else {
- if ( aExp == 0xFF ) {
- if ( aSig | bSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
- zSig = 0x40000000 + aSig + bSig;
- zExp = aExp;
- goto roundAndPack;
- }
- aSig |= 0x20000000;
- zSig = ( aSig + bSig )<<1;
- --zExp;
- if ( (sbits32) zSig < 0 ) {
- zSig = aSig + bSig;
- ++zExp;
- }
- roundAndPack:
- return roundAndPackFloat32( zSign, zExp, zSig );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of subtracting the absolute values of the single-
-precision floating-point values `a' and `b'. If `zSign' is 1, the
-difference is negated before being returned. `zSign' is ignored if the
-result is a NaN. The subtraction is performed according to the IEC/IEEE
-Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )
-{
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig;
- int16 expDiff;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 7;
- bSig <<= 7;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0xFF ) {
- if ( aSig | bSig ) return propagateFloat32NaN( a, b );
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloat32( float_rounding_mode == float_round_down, 0, 0 );
- bExpBigger:
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return packFloat32( zSign ^ 1, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= 0x40000000;
- }
- shift32RightJamming( aSig, - expDiff, &aSig );
- bSig |= 0x40000000;
- bBigger:
- zSig = bSig - aSig;
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= 0x40000000;
- }
- shift32RightJamming( bSig, expDiff, &bSig );
- aSig |= 0x40000000;
- aBigger:
- zSig = aSig - bSig;
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat32( zSign, zExp, zSig );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of adding the single-precision floating-point values `a'
-and `b'. The operation is performed according to the IEC/IEEE Standard for
-Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_add( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign == bSign ) {
- return addFloat32Sigs( a, b, aSign );
- }
- else {
- return subFloat32Sigs( a, b, aSign );
- }
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of subtracting the single-precision floating-point values
-`a' and `b'. The operation is performed according to the IEC/IEEE Standard
-for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_sub( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign == bSign ) {
- return subFloat32Sigs( a, b, aSign );
- }
- else {
- return addFloat32Sigs( a, b, aSign );
- }
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of multiplying the single-precision floating-point values
-`a' and `b'. The operation is performed according to the IEC/IEEE Standard
-for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_mul( float32 a, float32 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig0, zSig1;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0xFF ) {
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
- return propagateFloat32NaN( a, b );
- }
- if ( ( bExp | bSig ) == 0 ) {
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- if ( ( aExp | aSig ) == 0 ) {
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x7F;
- aSig = ( aSig | 0x00800000 )<<7;
- bSig = ( bSig | 0x00800000 )<<8;
- mul32To64( aSig, bSig, &zSig0, &zSig1 );
- zSig0 |= ( zSig1 != 0 );
- if ( 0 <= (sbits32) ( zSig0<<1 ) ) {
- zSig0 <<= 1;
- --zExp;
- }
- return roundAndPackFloat32( zSign, zExp, zSig0 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of dividing the single-precision floating-point value `a'
-by the corresponding value `b'. The operation is performed according to the
-IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_div( float32 a, float32 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig, rem0, rem1, term0, term1;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, b );
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return packFloat32( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- float_raise( float_flag_divbyzero );
- return packFloat32( zSign, 0xFF, 0 );
- }
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x7D;
- aSig = ( aSig | 0x00800000 )<<7;
- bSig = ( bSig | 0x00800000 )<<8;
- if ( bSig <= ( aSig + aSig ) ) {
- aSig >>= 1;
- ++zExp;
- }
- zSig = estimateDiv64To32( aSig, 0, bSig );
- if ( ( zSig & 0x3F ) <= 2 ) {
- mul32To64( bSig, zSig, &term0, &term1 );
- sub64( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (sbits32) rem0 < 0 ) {
- --zSig;
- add64( rem0, rem1, 0, bSig, &rem0, &rem1 );
- }
- zSig |= ( rem1 != 0 );
- }
- return roundAndPackFloat32( zSign, zExp, zSig );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Returns the remainder of the single-precision floating-point value `a'
-with respect to the corresponding value `b'. The operation is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_rem( float32 a, float32 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, expDiff;
- bits32 aSig, bSig, q, allZero, alternateASig;
- sbits32 sigMean;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- if ( aExp == 0xFF ) {
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
- return propagateFloat32NaN( a, b );
- }
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return a;
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- expDiff = aExp - bExp;
- aSig = ( aSig | 0x00800000 )<<8;
- bSig = ( bSig | 0x00800000 )<<8;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- aSig >>= 1;
- }
- q = ( bSig <= aSig );
- if ( q ) aSig -= bSig;
- expDiff -= 32;
- while ( 0 < expDiff ) {
- q = estimateDiv64To32( aSig, 0, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- aSig = - ( ( bSig>>2 ) * q );
- expDiff -= 30;
- }
- expDiff += 32;
- if ( 0 < expDiff ) {
- q = estimateDiv64To32( aSig, 0, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- q >>= 32 - expDiff;
- bSig >>= 2;
- aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
- }
- else {
- aSig >>= 2;
- bSig >>= 2;
- }
- do {
- alternateASig = aSig;
- ++q;
- aSig -= bSig;
- } while ( 0 <= (sbits32) aSig );
- sigMean = aSig + alternateASig;
- if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
- aSig = alternateASig;
- }
- zSign = ( (sbits32) aSig < 0 );
- if ( zSign ) aSig = - aSig;
- return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );
-
-}
-#endif
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Returns the square root of the single-precision floating-point value `a'.
-The operation is performed according to the IEC/IEEE Standard for Binary
-Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_sqrt( float32 a )
-{
- flag aSign;
- int16 aExp, zExp;
- bits32 aSig, zSig, rem0, rem1, term0, term1;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, 0 );
- if ( ! aSign ) return a;
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- if ( aSign ) {
- if ( ( aExp | aSig ) == 0 ) return a;
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return 0;
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
- aSig = ( aSig | 0x00800000 )<<8;
- zSig = estimateSqrt32( aExp, aSig ) + 2;
- if ( ( zSig & 0x7F ) <= 5 ) {
- if ( zSig < 2 ) {
- zSig = 0x7FFFFFFF;
- goto roundAndPack;
- }
- else {
- aSig >>= aExp & 1;
- mul32To64( zSig, zSig, &term0, &term1 );
- sub64( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (sbits32) rem0 < 0 ) {
- --zSig;
- shortShift64Left( 0, zSig, 1, &term0, &term1 );
- term1 |= 1;
- add64( rem0, rem1, term0, term1, &rem0, &rem1 );
- }
- zSig |= ( ( rem0 | rem1 ) != 0 );
- }
- }
- shift32RightJamming( zSig, 1, &zSig );
- roundAndPack:
- return roundAndPackFloat32( 0, zExp, zSig );
-
-}
-#endif
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is equal to
-the corresponding value `b', and 0 otherwise. The comparison is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float32_eq( float32 a, float32 b )
-{
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is less than
-or equal to the corresponding value `b', and 0 otherwise. The comparison
-is performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float32_le( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is less than
-the corresponding value `b', and 0 otherwise. The comparison is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float32_lt( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is equal to
-the corresponding value `b', and 0 otherwise. The invalid exception is
-raised if either operand is a NaN. Otherwise, the comparison is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float32_eq_signaling( float32 a, float32 b )
-{
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is less than or
-equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-cause an exception. Otherwise, the comparison is performed according to the
-IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float32_le_quiet( float32 a, float32 b )
-{
- flag aSign, bSign;
- int16 aExp, bExp;
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is less than
-the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-exception. Otherwise, the comparison is performed according to the IEC/IEEE
-Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float32_lt_quiet( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
-
-}
-#endif /* !SOFTFLOAT_FOR_GCC */
-
-#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the double-precision floating-point value
-`a' to the 32-bit two's complement integer format. The conversion is
-performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic---which means in particular that the conversion is rounded
-according to the current rounding mode. If `a' is a NaN, the largest
-positive integer is returned. Otherwise, if the conversion overflows, the
-largest integer with the same sign as `a' is returned.
--------------------------------------------------------------------------------
-*/
-int32 float64_to_int32( float64 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig0, aSig1, absZ, aSigExtra;
- int32 z;
- int8 roundingMode;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- shiftCount = aExp - 0x413;
- if ( 0 <= shiftCount ) {
- if ( 0x41E < aExp ) {
- if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;
- goto invalid;
- }
- shortShift64Left(
- aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );
- if ( 0x80000000 < absZ ) goto invalid;
- }
- else {
- aSig1 = ( aSig1 != 0 );
- if ( aExp < 0x3FE ) {
- aSigExtra = aExp | aSig0 | aSig1;
- absZ = 0;
- }
- else {
- aSig0 |= 0x00100000;
- aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;
- absZ = aSig0>>( - shiftCount );
- }
- }
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- if ( (sbits32) aSigExtra < 0 ) {
- ++absZ;
- if ( (bits32) ( aSigExtra<<1 ) == 0 ) absZ &= ~1;
- }
- z = aSign ? - absZ : absZ;
- }
- else {
- aSigExtra = ( aSigExtra != 0 );
- if ( aSign ) {
- z = - ( absZ
- + ( ( roundingMode == float_round_down ) & aSigExtra ) );
- }
- else {
- z = absZ + ( ( roundingMode == float_round_up ) & aSigExtra );
- }
- }
- if ( ( aSign ^ ( z < 0 ) ) && z ) {
- invalid:
- float_raise( float_flag_invalid );
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
- }
- if ( aSigExtra ) set_float_exception_inexact_flag();
- return z;
-
-}
-#endif /* !SOFTFLOAT_FOR_GCC */
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the double-precision floating-point value
-`a' to the 32-bit two's complement integer format. The conversion is
-performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic, except that the conversion is always rounded toward zero.
-If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-the conversion overflows, the largest integer with the same sign as `a' is
-returned.
--------------------------------------------------------------------------------
-*/
-int32 float64_to_int32_round_to_zero( float64 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig0, aSig1, absZ, aSigExtra;
- int32 z;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- shiftCount = aExp - 0x413;
- if ( 0 <= shiftCount ) {
- if ( 0x41E < aExp ) {
- if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;
- goto invalid;
- }
- shortShift64Left(
- aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );
- }
- else {
- if ( aExp < 0x3FF ) {
- if ( aExp | aSig0 | aSig1 ) {
- set_float_exception_inexact_flag();
- }
- return 0;
- }
- aSig0 |= 0x00100000;
- aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;
- absZ = aSig0>>( - shiftCount );
- }
- z = aSign ? - absZ : absZ;
- if ( ( aSign ^ ( z < 0 ) ) && z ) {
- invalid:
- float_raise( float_flag_invalid );
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
- }
- if ( aSigExtra ) set_float_exception_inexact_flag();
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the double-precision floating-point value
-`a' to the single-precision floating-point format. The conversion is
-performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float64_to_float32( float64 a )
-{
- flag aSign;
- int16 aExp;
- bits32 aSig0, aSig1, zSig;
- bits32 allZero;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloat32( float64ToCommonNaN( a ) );
- }
- return packFloat32( aSign, 0xFF, 0 );
- }
- shift64RightJamming( aSig0, aSig1, 22, &allZero, &zSig );
- if ( aExp ) zSig |= 0x40000000;
- return roundAndPackFloat32( aSign, aExp - 0x381, zSig );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Rounds the double-precision floating-point value `a' to an integer,
-and returns the result as a double-precision floating-point value. The
-operation is performed according to the IEC/IEEE Standard for Binary
-Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_round_to_int( float64 a )
-{
- flag aSign;
- int16 aExp;
- bits32 lastBitMask, roundBitsMask;
- int8 roundingMode;
- float64 z;
-
- aExp = extractFloat64Exp( a );
- if ( 0x413 <= aExp ) {
- if ( 0x433 <= aExp ) {
- if ( ( aExp == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) {
- return propagateFloat64NaN( a, a );
- }
- return a;
- }
- lastBitMask = 1;
- lastBitMask = ( lastBitMask<<( 0x432 - aExp ) )<<1;
- roundBitsMask = lastBitMask - 1;
- z = a;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- if ( lastBitMask ) {
- add64( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
- if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
- }
- else {
- if ( (sbits32) z.low < 0 ) {
- ++z.high;
- if ( (bits32) ( z.low<<1 ) == 0 ) z.high &= ~1;
- }
- }
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat64Sign( z )
- ^ ( roundingMode == float_round_up ) ) {
- add64( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
- }
- }
- z.low &= ~ roundBitsMask;
- }
- else {
- if ( aExp <= 0x3FE ) {
- if ( ( ( (bits32) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
- set_float_exception_inexact_flag();
- aSign = extractFloat64Sign( a );
- switch ( float_rounding_mode ) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FE )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) )
- ) {
- return packFloat64( aSign, 0x3FF, 0, 0 );
- }
- break;
- case float_round_down:
- return
- aSign ? packFloat64( 1, 0x3FF, 0, 0 )
- : packFloat64( 0, 0, 0, 0 );
- case float_round_up:
- return
- aSign ? packFloat64( 1, 0, 0, 0 )
- : packFloat64( 0, 0x3FF, 0, 0 );
- }
- return packFloat64( aSign, 0, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x413 - aExp;
- roundBitsMask = lastBitMask - 1;
- z.low = 0;
- z.high = a.high;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- z.high += lastBitMask>>1;
- if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
- z.high &= ~ lastBitMask;
- }
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat64Sign( z )
- ^ ( roundingMode == float_round_up ) ) {
- z.high |= ( a.low != 0 );
- z.high += roundBitsMask;
- }
- }
- z.high &= ~ roundBitsMask;
- }
- if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
- set_float_exception_inexact_flag();
- }
- return z;
-
-}
-#endif
-
-/*
--------------------------------------------------------------------------------
-Returns the result of adding the absolute values of the double-precision
-floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
-before being returned. `zSign' is ignored if the result is a NaN.
-The addition is performed according to the IEC/IEEE Standard for Binary
-Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-static float64 addFloat64Sigs( float64 a, float64 b, flag zSign )
-{
- int16 aExp, bExp, zExp;
- bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
- int16 expDiff;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- bSig1 = extractFloat64Frac1( b );
- bSig0 = extractFloat64Frac0( b );
- bExp = extractFloat64Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig0 |= 0x00100000;
- }
- shift64ExtraRightJamming(
- bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FF ) {
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
- return packFloat64( zSign, 0x7FF, 0, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig0 |= 0x00100000;
- }
- shift64ExtraRightJamming(
- aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
- return propagateFloat64NaN( a, b );
- }
- return a;
- }
- add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- if ( aExp == 0 ) return packFloat64( zSign, 0, zSig0, zSig1 );
- zSig2 = 0;
- zSig0 |= 0x00200000;
- zExp = aExp;
- goto shiftRight1;
- }
- aSig0 |= 0x00100000;
- add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- --zExp;
- if ( zSig0 < 0x00200000 ) goto roundAndPack;
- ++zExp;
- shiftRight1:
- shift64ExtraRightJamming( zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
- roundAndPack:
- return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of subtracting the absolute values of the double-
-precision floating-point values `a' and `b'. If `zSign' is 1, the
-difference is negated before being returned. `zSign' is ignored if the
-result is a NaN. The subtraction is performed according to the IEC/IEEE
-Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-static float64 subFloat64Sigs( float64 a, float64 b, flag zSign )
-{
- int16 aExp, bExp, zExp;
- bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
- int16 expDiff;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- bSig1 = extractFloat64Frac1( b );
- bSig0 = extractFloat64Frac0( b );
- bExp = extractFloat64Exp( b );
- expDiff = aExp - bExp;
- shortShift64Left( aSig0, aSig1, 10, &aSig0, &aSig1 );
- shortShift64Left( bSig0, bSig1, 10, &bSig0, &bSig1 );
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
- return propagateFloat64NaN( a, b );
- }
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig0 < aSig0 ) goto aBigger;
- if ( aSig0 < bSig0 ) goto bBigger;
- if ( bSig1 < aSig1 ) goto aBigger;
- if ( aSig1 < bSig1 ) goto bBigger;
- return packFloat64( float_rounding_mode == float_round_down, 0, 0, 0 );
- bExpBigger:
- if ( bExp == 0x7FF ) {
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
- return packFloat64( zSign ^ 1, 0x7FF, 0, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig0 |= 0x40000000;
- }
- shift64RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
- bSig0 |= 0x40000000;
- bBigger:
- sub64( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig0 |= 0x40000000;
- }
- shift64RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
- aSig0 |= 0x40000000;
- aBigger:
- sub64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat64( zSign, zExp - 10, zSig0, zSig1 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of adding the double-precision floating-point values `a'
-and `b'. The operation is performed according to the IEC/IEEE Standard for
-Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_add( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign == bSign ) {
- return addFloat64Sigs( a, b, aSign );
- }
- else {
- return subFloat64Sigs( a, b, aSign );
- }
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of subtracting the double-precision floating-point values
-`a' and `b'. The operation is performed according to the IEC/IEEE Standard
-for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_sub( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign == bSign ) {
- return subFloat64Sigs( a, b, aSign );
- }
- else {
- return addFloat64Sigs( a, b, aSign );
- }
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of multiplying the double-precision floating-point values
-`a' and `b'. The operation is performed according to the IEC/IEEE Standard
-for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_mul( float64 a, float64 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig1 = extractFloat64Frac1( b );
- bSig0 = extractFloat64Frac0( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FF ) {
- if ( ( aSig0 | aSig1 )
- || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {
- return propagateFloat64NaN( a, b );
- }
- if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
- return packFloat64( zSign, 0x7FF, 0, 0 );
- }
- if ( bExp == 0x7FF ) {
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- return packFloat64( zSign, 0x7FF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
- normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
- normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- zExp = aExp + bExp - 0x400;
- aSig0 |= 0x00100000;
- shortShift64Left( bSig0, bSig1, 12, &bSig0, &bSig1 );
- mul64To128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
- add64( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
- zSig2 |= ( zSig3 != 0 );
- if ( 0x00200000 <= zSig0 ) {
- shift64ExtraRightJamming(
- zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
- ++zExp;
- }
- return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of dividing the double-precision floating-point value `a'
-by the corresponding value `b'. The operation is performed according to the
-IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_div( float64 a, float64 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
- bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig1 = extractFloat64Frac1( b );
- bSig0 = extractFloat64Frac0( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
- if ( bExp == 0x7FF ) {
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
- goto invalid;
- }
- return packFloat64( zSign, 0x7FF, 0, 0 );
- }
- if ( bExp == 0x7FF ) {
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
- return packFloat64( zSign, 0, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) {
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- float_raise( float_flag_divbyzero );
- return packFloat64( zSign, 0x7FF, 0, 0 );
- }
- normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
- normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- zExp = aExp - bExp + 0x3FD;
- shortShift64Left( aSig0 | 0x00100000, aSig1, 11, &aSig0, &aSig1 );
- shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );
- if ( le64( bSig0, bSig1, aSig0, aSig1 ) ) {
- shift64Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
- ++zExp;
- }
- zSig0 = estimateDiv64To32( aSig0, aSig1, bSig0 );
- mul64By32To96( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
- sub96( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
- while ( (sbits32) rem0 < 0 ) {
- --zSig0;
- add96( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
- }
- zSig1 = estimateDiv64To32( rem1, rem2, bSig0 );
- if ( ( zSig1 & 0x3FF ) <= 4 ) {
- mul64By32To96( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
- sub96( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
- while ( (sbits32) rem1 < 0 ) {
- --zSig1;
- add96( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shift64ExtraRightJamming( zSig0, zSig1, 0, 11, &zSig0, &zSig1, &zSig2 );
- return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Returns the remainder of the double-precision floating-point value `a'
-with respect to the corresponding value `b'. The operation is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_rem( float64 a, float64 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, expDiff;
- bits32 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
- bits32 allZero, alternateASig0, alternateASig1, sigMean1;
- sbits32 sigMean0;
- float64 z;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig1 = extractFloat64Frac1( b );
- bSig0 = extractFloat64Frac0( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- if ( aExp == 0x7FF ) {
- if ( ( aSig0 | aSig1 )
- || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {
- return propagateFloat64NaN( a, b );
- }
- goto invalid;
- }
- if ( bExp == 0x7FF ) {
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return a;
- normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- expDiff = aExp - bExp;
- if ( expDiff < -1 ) return a;
- shortShift64Left(
- aSig0 | 0x00100000, aSig1, 11 - ( expDiff < 0 ), &aSig0, &aSig1 );
- shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );
- q = le64( bSig0, bSig1, aSig0, aSig1 );
- if ( q ) sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
- expDiff -= 32;
- while ( 0 < expDiff ) {
- q = estimateDiv64To32( aSig0, aSig1, bSig0 );
- q = ( 4 < q ) ? q - 4 : 0;
- mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );
- shortShift96Left( term0, term1, term2, 29, &term1, &term2, &allZero );
- shortShift64Left( aSig0, aSig1, 29, &aSig0, &allZero );
- sub64( aSig0, 0, term1, term2, &aSig0, &aSig1 );
- expDiff -= 29;
- }
- if ( -32 < expDiff ) {
- q = estimateDiv64To32( aSig0, aSig1, bSig0 );
- q = ( 4 < q ) ? q - 4 : 0;
- q >>= - expDiff;
- shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );
- expDiff += 24;
- if ( expDiff < 0 ) {
- shift64Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
- }
- else {
- shortShift64Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
- }
- mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );
- sub64( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
- }
- else {
- shift64Right( aSig0, aSig1, 8, &aSig0, &aSig1 );
- shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );
- }
- do {
- alternateASig0 = aSig0;
- alternateASig1 = aSig1;
- ++q;
- sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
- } while ( 0 <= (sbits32) aSig0 );
- add64(
- aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 );
- if ( ( sigMean0 < 0 )
- || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
- aSig0 = alternateASig0;
- aSig1 = alternateASig1;
- }
- zSign = ( (sbits32) aSig0 < 0 );
- if ( zSign ) sub64( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
- return
- normalizeRoundAndPackFloat64( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
-
-}
-#endif
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Returns the square root of the double-precision floating-point value `a'.
-The operation is performed according to the IEC/IEEE Standard for Binary
-Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_sqrt( float64 a )
-{
- flag aSign;
- int16 aExp, zExp;
- bits32 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
- bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- float64 z;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, a );
- if ( ! aSign ) return a;
- goto invalid;
- }
- if ( aSign ) {
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
- invalid:
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( 0, 0, 0, 0 );
- normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
- aSig0 |= 0x00100000;
- shortShift64Left( aSig0, aSig1, 11, &term0, &term1 );
- zSig0 = ( estimateSqrt32( aExp, term0 )>>1 ) + 1;
- if ( zSig0 == 0 ) zSig0 = 0x7FFFFFFF;
- doubleZSig0 = zSig0 + zSig0;
- shortShift64Left( aSig0, aSig1, 9 - ( aExp & 1 ), &aSig0, &aSig1 );
- mul32To64( zSig0, zSig0, &term0, &term1 );
- sub64( aSig0, aSig1, term0, term1, &rem0, &rem1 );
- while ( (sbits32) rem0 < 0 ) {
- --zSig0;
- doubleZSig0 -= 2;
- add64( rem0, rem1, 0, doubleZSig0 | 1, &rem0, &rem1 );
- }
- zSig1 = estimateDiv64To32( rem1, 0, doubleZSig0 );
- if ( ( zSig1 & 0x1FF ) <= 5 ) {
- if ( zSig1 == 0 ) zSig1 = 1;
- mul32To64( doubleZSig0, zSig1, &term1, &term2 );
- sub64( rem1, 0, term1, term2, &rem1, &rem2 );
- mul32To64( zSig1, zSig1, &term2, &term3 );
- sub96( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
- while ( (sbits32) rem1 < 0 ) {
- --zSig1;
- shortShift64Left( 0, zSig1, 1, &term2, &term3 );
- term3 |= 1;
- term2 |= doubleZSig0;
- add96( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shift64ExtraRightJamming( zSig0, zSig1, 0, 10, &zSig0, &zSig1, &zSig2 );
- return roundAndPackFloat64( 0, zExp, zSig0, zSig1, zSig2 );
-
-}
-#endif
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is equal to
-the corresponding value `b', and 0 otherwise. The comparison is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float64_eq( float64 a, float64 b )
-{
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF )
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- return ( a == b ) ||
- ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is less than
-or equal to the corresponding value `b', and 0 otherwise. The comparison
-is performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float64_le( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF )
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign )
- return aSign ||
- ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) ==
- 0 );
- return ( a == b ) ||
- ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is less than
-the corresponding value `b', and 0 otherwise. The comparison is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float64_lt( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF )
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign )
- return aSign &&
- ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) !=
- 0 );
- return ( a != b ) &&
- ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is equal to
-the corresponding value `b', and 0 otherwise. The invalid exception is
-raised if either operand is a NaN. Otherwise, the comparison is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float64_eq_signaling( float64 a, float64 b )
-{
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF )
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is less than or
-equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-cause an exception. Otherwise, the comparison is performed according to the
-IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float64_le_quiet( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF )
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is less than
-the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-exception. Otherwise, the comparison is performed according to the IEC/IEEE
-Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float64_lt_quiet( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF )
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
-
-}
-
-#endif
diff --git a/ArmPkg/Library/ArmSoftFloatLib/milieu.h b/ArmPkg/Library/ArmSoftFloatLib/milieu.h
deleted file mode 100644
index 8f4ac00076ae..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/milieu.h
+++ /dev/null
@@ -1,38 +0,0 @@
-/* $NetBSD: milieu.h,v 1.1 2000/12/29 20:13:54 bjh21 Exp $ */
-
-/*
-===============================================================================
-
-This C header file is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2a.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
-has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
-TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
-PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
-AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) they include prominent notice that the work is derivative, and (2) they
-include prominent notice akin to these four paragraphs for those parts of
-this code that are retained.
-
-===============================================================================
-*/
-
-/*
--------------------------------------------------------------------------------
-Include common integer types and flags.
--------------------------------------------------------------------------------
-*/
-#include "arm-gcc.h"
diff --git a/ArmPkg/Library/ArmSoftFloatLib/softfloat-for-gcc.h b/ArmPkg/Library/ArmSoftFloatLib/softfloat-for-gcc.h
deleted file mode 100644
index c825d70097b8..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/softfloat-for-gcc.h
+++ /dev/null
@@ -1,242 +0,0 @@
-/* $NetBSD: softfloat-for-gcc.h,v 1.12 2013/08/01 23:21:19 matt Exp $ */
-/*-
- * Copyright (c) 2008 The NetBSD Foundation, Inc.
- * All rights reserved.
- *
- * This code is derived from software contributed to The NetBSD Foundation
- * by
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
- * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
- * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
- * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
-
-/*
- * Move private identifiers with external linkage into implementation
- * namespace. -- Klaus Klein <kleink@NetBSD.org>, May 5, 1999
- */
-#define float_exception_flags _softfloat_float_exception_flags
-#define float_exception_mask _softfloat_float_exception_mask
-#define float_rounding_mode _softfloat_float_rounding_mode
-#define float_raise _softfloat_float_raise
-
-/* The following batch are called by GCC through wrappers */
-#define float32_eq _softfloat_float32_eq
-#define float32_le _softfloat_float32_le
-#define float32_lt _softfloat_float32_lt
-#define float64_eq _softfloat_float64_eq
-#define float64_le _softfloat_float64_le
-#define float64_lt _softfloat_float64_lt
-#define float128_eq _softfloat_float128_eq
-#define float128_le _softfloat_float128_le
-#define float128_lt _softfloat_float128_lt
-
-/*
- * Macros to define functions with the GCC expected names
- */
-
-#define float32_add __addsf3
-#define float64_add __adddf3
-#define floatx80_add __addxf3
-#define float128_add __addtf3
-
-#define float32_sub __subsf3
-#define float64_sub __subdf3
-#define floatx80_sub __subxf3
-#define float128_sub __subtf3
-
-#define float32_mul __mulsf3
-#define float64_mul __muldf3
-#define floatx80_mul __mulxf3
-#define float128_mul __multf3
-
-#define float32_div __divsf3
-#define float64_div __divdf3
-#define floatx80_div __divxf3
-#define float128_div __divtf3
-
-#if 0
-#define float32_neg __negsf2
-#define float64_neg __negdf2
-#define floatx80_neg __negxf2
-#define float128_neg __negtf2
-#endif
-
-#define int32_to_float32 __floatsisf
-#define int32_to_float64 __floatsidf
-#define int32_to_floatx80 __floatsixf
-#define int32_to_float128 __floatsitf
-
-#define int64_to_float32 __floatdisf
-#define int64_to_float64 __floatdidf
-#define int64_to_floatx80 __floatdixf
-#define int64_to_float128 __floatditf
-
-#define int128_to_float32 __floattisf
-#define int128_to_float64 __floattidf
-#define int128_to_floatx80 __floattixf
-#define int128_to_float128 __floattitf
-
-#define uint32_to_float32 __floatunsisf
-#define uint32_to_float64 __floatunsidf
-#define uint32_to_floatx80 __floatunsixf
-#define uint32_to_float128 __floatunsitf
-
-#define uint64_to_float32 __floatundisf
-#define uint64_to_float64 __floatundidf
-#define uint64_to_floatx80 __floatundixf
-#define uint64_to_float128 __floatunditf
-
-#define uint128_to_float32 __floatuntisf
-#define uint128_to_float64 __floatuntidf
-#define uint128_to_floatx80 __floatuntixf
-#define uint128_to_float128 __floatuntitf
-
-#define float32_to_int32_round_to_zero __fixsfsi
-#define float64_to_int32_round_to_zero __fixdfsi
-#define floatx80_to_int32_round_to_zero __fixxfsi
-#define float128_to_int32_round_to_zero __fixtfsi
-
-#define float32_to_int64_round_to_zero __fixsfdi
-#define float64_to_int64_round_to_zero __fixdfdi
-#define floatx80_to_int64_round_to_zero __fixxfdi
-#define float128_to_int64_round_to_zero __fixtfdi
-
-#define float32_to_int128_round_to_zero __fixsfti
-#define float64_to_int128_round_to_zero __fixdfti
-#define floatx80_to_int128_round_to_zero __fixxfti
-#define float128_to_int128_round_to_zero __fixtfti
-
-#define float32_to_uint32_round_to_zero __fixunssfsi
-#define float64_to_uint32_round_to_zero __fixunsdfsi
-#define floatx80_to_uint32_round_to_zero __fixunsxfsi
-#define float128_to_uint32_round_to_zero __fixunstfsi
-
-#define float32_to_uint64_round_to_zero __fixunssfdi
-#define float64_to_uint64_round_to_zero __fixunsdfdi
-#define floatx80_to_uint64_round_to_zero __fixunsxfdi
-#define float128_to_uint64_round_to_zero __fixunstfdi
-
-#define float32_to_uint128_round_to_zero __fixunssfti
-#define float64_to_uint128_round_to_zero __fixunsdfti
-#define floatx80_to_uint128_round_to_zero __fixunsxfti
-#define float128_to_uint128_round_to_zero __fixunstfti
-
-#define float32_to_float64 __extendsfdf2
-#define float32_to_floatx80 __extendsfxf2
-#define float32_to_float128 __extendsftf2
-#define float64_to_floatx80 __extenddfxf2
-#define float64_to_float128 __extenddftf2
-
-#define float128_to_float64 __trunctfdf2
-#define floatx80_to_float64 __truncxfdf2
-#define float128_to_float32 __trunctfsf2
-#define floatx80_to_float32 __truncxfsf2
-#define float64_to_float32 __truncdfsf2
-
-#if 0
-#define float32_cmp __cmpsf2
-#define float32_unord __unordsf2
-#define float32_eq __eqsf2
-#define float32_ne __nesf2
-#define float32_ge __gesf2
-#define float32_lt __ltsf2
-#define float32_le __lesf2
-#define float32_gt __gtsf2
-#endif
-
-#if 0
-#define float64_cmp __cmpdf2
-#define float64_unord __unorddf2
-#define float64_eq __eqdf2
-#define float64_ne __nedf2
-#define float64_ge __gedf2
-#define float64_lt __ltdf2
-#define float64_le __ledf2
-#define float64_gt __gtdf2
-#endif
-
-/* XXX not in libgcc */
-#if 1
-#define floatx80_cmp __cmpxf2
-#define floatx80_unord __unordxf2
-#define floatx80_eq __eqxf2
-#define floatx80_ne __nexf2
-#define floatx80_ge __gexf2
-#define floatx80_lt __ltxf2
-#define floatx80_le __lexf2
-#define floatx80_gt __gtxf2
-#endif
-
-#if 0
-#define float128_cmp __cmptf2
-#define float128_unord __unordtf2
-#define float128_eq __eqtf2
-#define float128_ne __netf2
-#define float128_ge __getf2
-#define float128_lt __lttf2
-#define float128_le __letf2
-#define float128_gt __gttf2
-#endif
-
-#if defined (__ARM_EABI__) || defined (__CC_ARM)
-#ifdef __ARM_PCS_VFP
-#include <arm/aeabi.h>
-#endif
-#define __addsf3 __aeabi_fadd
-#define __adddf3 __aeabi_dadd
-
-#define __subsf3 __aeabi_fsub
-#define __subdf3 __aeabi_dsub
-
-#define __mulsf3 __aeabi_fmul
-#define __muldf3 __aeabi_dmul
-
-#define __divsf3 __aeabi_fdiv
-#define __divdf3 __aeabi_ddiv
-
-#define __floatsisf __aeabi_i2f
-#define __floatsidf __aeabi_i2d
-
-#define __floatdisf __aeabi_l2f
-#define __floatdidf __aeabi_l2d
-
-#define __floatunsisf __aeabi_ui2f
-#define __floatunsidf __aeabi_ui2d
-
-#define __floatundisf __aeabi_ul2f
-#define __floatundidf __aeabi_ul2d
-
-#define __fixsfsi __aeabi_f2iz
-#define __fixdfsi __aeabi_d2iz
-
-#define __fixsfdi __aeabi_f2lz
-#define __fixdfdi __aeabi_d2lz
-
-#define __fixunssfsi __aeabi_f2uiz
-#define __fixunsdfsi __aeabi_d2uiz
-
-#define __fixunssfdi __aeabi_f2ulz
-#define __fixunsdfdi __aeabi_d2ulz
-
-#define __extendsfdf2 __aeabi_f2d
-#define __truncdfsf2 __aeabi_d2f
-
-#endif /* __ARM_EABI__ */
diff --git a/ArmPkg/Library/ArmSoftFloatLib/softfloat-specialize b/ArmPkg/Library/ArmSoftFloatLib/softfloat-specialize
deleted file mode 100644
index 4c99d0ae9937..000000000000
--- a/ArmPkg/Library/ArmSoftFloatLib/softfloat-specialize
+++ /dev/null
@@ -1,525 +0,0 @@
-/* $NetBSD: softfloat-specialize,v 1.8 2013/01/10 08:16:10 matt Exp $ */
-
-/* This is a derivative work. */
-
-/*
-===============================================================================
-
-This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2a.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
-has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
-TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
-PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
-AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) they include prominent notice that the work is derivative, and (2) they
-include prominent notice akin to these four paragraphs for those parts of
-this code that are retained.
-
-===============================================================================
-*/
-
-/*
--------------------------------------------------------------------------------
-Underflow tininess-detection mode, statically initialized to default value.
-(The declaration in `softfloat.h' must match the `int8' type here.)
--------------------------------------------------------------------------------
-*/
-#ifdef SOFTFLOAT_FOR_GCC
-static
-#endif
-int8 float_detect_tininess = float_tininess_after_rounding;
-
-/*
--------------------------------------------------------------------------------
-Raises the exceptions specified by `flags'. Floating-point traps can be
-defined here if desired. It is currently not possible for such a trap to
-substitute a result value. If traps are not implemented, this routine
-should be simply `float_exception_flags |= flags;'.
--------------------------------------------------------------------------------
-*/
-#ifdef SOFTFLOAT_FOR_GCC
-#ifndef set_float_exception_mask
-#define float_exception_mask _softfloat_float_exception_mask
-#endif
-#endif
-#ifndef set_float_exception_mask
-fp_except float_exception_mask = 0;
-#endif
-void
-float_raise( fp_except flags )
-{
-
-#if 0 // Don't raise exceptions
- siginfo_t info;
- fp_except mask = float_exception_mask;
-
-#ifdef set_float_exception_mask
- flags |= set_float_exception_flags(flags, 0);
-#else
- float_exception_flags |= flags;
- flags = float_exception_flags;
-#endif
-
- flags &= mask;
- if ( flags ) {
- memset(&info, 0, sizeof info);
- info.si_signo = SIGFPE;
- info.si_pid = getpid();
- info.si_uid = geteuid();
- if (flags & float_flag_underflow)
- info.si_code = FPE_FLTUND;
- else if (flags & float_flag_overflow)
- info.si_code = FPE_FLTOVF;
- else if (flags & float_flag_divbyzero)
- info.si_code = FPE_FLTDIV;
- else if (flags & float_flag_invalid)
- info.si_code = FPE_FLTINV;
- else if (flags & float_flag_inexact)
- info.si_code = FPE_FLTRES;
- sigqueueinfo(getpid(), &info);
- }
-#else // Don't raise exceptions
- float_exception_flags |= flags;
-#endif // Don't raise exceptions
-}
-#undef float_exception_mask
-
-/*
--------------------------------------------------------------------------------
-Internal canonical NaN format.
--------------------------------------------------------------------------------
-*/
-typedef struct {
- flag sign;
- bits64 high, low;
-} commonNaNT;
-
-/*
--------------------------------------------------------------------------------
-The pattern for a default generated single-precision NaN.
--------------------------------------------------------------------------------
-*/
-#define float32_default_nan 0xFFFFFFFF
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is a NaN;
-otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-#ifdef SOFTFLOAT_FOR_GCC
-static
-#endif
-flag float32_is_nan( float32 a )
-{
-
- return ( (bits32)0xFF000000 < (bits32) ( a<<1 ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is a signaling
-NaN; otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
- !defined(SOFTFLOAT_M68K_FOR_GCC)
-static
-#endif
-flag float32_is_signaling_nan( float32 a )
-{
-
- return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the single-precision floating-point NaN
-`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-exception is raised.
--------------------------------------------------------------------------------
-*/
-static commonNaNT float32ToCommonNaN( float32 a )
-{
- commonNaNT z;
-
- if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
- z.sign = a>>31;
- z.low = 0;
- z.high = ( (bits64) a )<<41;
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the canonical NaN `a' to the single-
-precision floating-point format.
--------------------------------------------------------------------------------
-*/
-static float32 commonNaNToFloat32( commonNaNT a )
-{
-
- return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | (bits32)( a.high>>41 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes two single-precision floating-point values `a' and `b', one of which
-is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-signaling NaN, the invalid exception is raised.
--------------------------------------------------------------------------------
-*/
-static float32 propagateFloat32NaN( float32 a, float32 b )
-{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
-
- aIsNaN = float32_is_nan( a );
- aIsSignalingNaN = float32_is_signaling_nan( a );
- bIsNaN = float32_is_nan( b );
- bIsSignalingNaN = float32_is_signaling_nan( b );
- a |= 0x00400000;
- b |= 0x00400000;
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
- if ( aIsNaN ) {
- return ( aIsSignalingNaN & bIsNaN ) ? b : a;
- }
- else {
- return b;
- }
-
-}
-
-/*
--------------------------------------------------------------------------------
-The pattern for a default generated double-precision NaN.
--------------------------------------------------------------------------------
-*/
-#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is a NaN;
-otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-#ifdef SOFTFLOAT_FOR_GCC
-static
-#endif
-flag float64_is_nan( float64 a )
-{
-
- return ( (bits64)LIT64( 0xFFE0000000000000 ) <
- (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is a signaling
-NaN; otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
- !defined(SOFTFLOATM68K_FOR_GCC)
-static
-#endif
-flag float64_is_signaling_nan( float64 a )
-{
-
- return
- ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
- && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the double-precision floating-point NaN
-`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-exception is raised.
--------------------------------------------------------------------------------
-*/
-static commonNaNT float64ToCommonNaN( float64 a )
-{
- commonNaNT z;
-
- if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
- z.sign = (flag)(FLOAT64_DEMANGLE(a)>>63);
- z.low = 0;
- z.high = FLOAT64_DEMANGLE(a)<<12;
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the canonical NaN `a' to the double-
-precision floating-point format.
--------------------------------------------------------------------------------
-*/
-static float64 commonNaNToFloat64( commonNaNT a )
-{
-
- return FLOAT64_MANGLE(
- ( ( (bits64) a.sign )<<63 )
- | LIT64( 0x7FF8000000000000 )
- | ( a.high>>12 ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes two double-precision floating-point values `a' and `b', one of which
-is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-signaling NaN, the invalid exception is raised.
--------------------------------------------------------------------------------
-*/
-static float64 propagateFloat64NaN( float64 a, float64 b )
-{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
-
- aIsNaN = float64_is_nan( a );
- aIsSignalingNaN = float64_is_signaling_nan( a );
- bIsNaN = float64_is_nan( b );
- bIsSignalingNaN = float64_is_signaling_nan( b );
- a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
- b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
- if ( aIsNaN ) {
- return ( aIsSignalingNaN & bIsNaN ) ? b : a;
- }
- else {
- return b;
- }
-
-}
-
-#ifdef FLOATX80
-
-/*
--------------------------------------------------------------------------------
-The pattern for a default generated extended double-precision NaN. The
-`high' and `low' values hold the most- and least-significant bits,
-respectively.
--------------------------------------------------------------------------------
-*/
-#define floatx80_default_nan_high 0xFFFF
-#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the extended double-precision floating-point value `a' is a
-NaN; otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-flag floatx80_is_nan( floatx80 a )
-{
-
- return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the extended double-precision floating-point value `a' is a
-signaling NaN; otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-flag floatx80_is_signaling_nan( floatx80 a )
-{
- bits64 aLow;
-
- aLow = a.low & ~ LIT64( 0x4000000000000000 );
- return
- ( ( a.high & 0x7FFF ) == 0x7FFF )
- && (bits64) ( aLow<<1 )
- && ( a.low == aLow );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the extended double-precision floating-
-point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
-invalid exception is raised.
--------------------------------------------------------------------------------
-*/
-static commonNaNT floatx80ToCommonNaN( floatx80 a )
-{
- commonNaNT z;
-
- if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
- z.sign = a.high>>15;
- z.low = 0;
- z.high = a.low<<1;
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the canonical NaN `a' to the extended
-double-precision floating-point format.
--------------------------------------------------------------------------------
-*/
-static floatx80 commonNaNToFloatx80( commonNaNT a )
-{
- floatx80 z;
-
- z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
- z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes two extended double-precision floating-point values `a' and `b', one
-of which is a NaN, and returns the appropriate NaN result. If either `a' or
-`b' is a signaling NaN, the invalid exception is raised.
--------------------------------------------------------------------------------
-*/
-static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
-{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
-
- aIsNaN = floatx80_is_nan( a );
- aIsSignalingNaN = floatx80_is_signaling_nan( a );
- bIsNaN = floatx80_is_nan( b );
- bIsSignalingNaN = floatx80_is_signaling_nan( b );
- a.low |= LIT64( 0xC000000000000000 );
- b.low |= LIT64( 0xC000000000000000 );
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
- if ( aIsNaN ) {
- return ( aIsSignalingNaN & bIsNaN ) ? b : a;
- }
- else {
- return b;
- }
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*
--------------------------------------------------------------------------------
-The pattern for a default generated quadruple-precision NaN. The `high' and
-`low' values hold the most- and least-significant bits, respectively.
--------------------------------------------------------------------------------
-*/
-#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
-#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
-otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-flag float128_is_nan( float128 a )
-{
-
- return
- ( (bits64)LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
- && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the quadruple-precision floating-point value `a' is a
-signaling NaN; otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-flag float128_is_signaling_nan( float128 a )
-{
-
- return
- ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
- && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the quadruple-precision floating-point NaN
-`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-exception is raised.
--------------------------------------------------------------------------------
-*/
-static commonNaNT float128ToCommonNaN( float128 a )
-{
- commonNaNT z;
-
- if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
- z.sign = (flag)(a.high>>63);
- shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the canonical NaN `a' to the quadruple-
-precision floating-point format.
--------------------------------------------------------------------------------
-*/
-static float128 commonNaNToFloat128( commonNaNT a )
-{
- float128 z;
-
- shift128Right( a.high, a.low, 16, &z.high, &z.low );
- z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes two quadruple-precision floating-point values `a' and `b', one of
-which is a NaN, and returns the appropriate NaN result. If either `a' or
-`b' is a signaling NaN, the invalid exception is raised.
--------------------------------------------------------------------------------
-*/
-static float128 propagateFloat128NaN( float128 a, float128 b )
-{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
-
- aIsNaN = float128_is_nan( a );
- aIsSignalingNaN = float128_is_signaling_nan( a );
- bIsNaN = float128_is_nan( b );
- bIsSignalingNaN = float128_is_signaling_nan( b );
- a.high |= LIT64( 0x0000800000000000 );
- b.high |= LIT64( 0x0000800000000000 );
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
- if ( aIsNaN ) {
- return ( aIsSignalingNaN & bIsNaN ) ? b : a;
- }
- else {
- return b;
- }
-
-}
-
-#endif
-
--
2.20.1
^ permalink raw reply related [flat|nested] 24+ messages in thread